IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1107-d740843.html
   My bibliography  Save this article

Performance Analysis and Comparative Study of a 467.2 kWp Grid-Interactive SPV System: A Case Study

Author

Listed:
  • Ahmad Faiz Minai

    (Electrical Engineering Department, Integral University, Lucknow 226026, India)

  • Tahsin Usmani

    (Electronics and Communication Engineering Department, Integral University, Lucknow 226026, India)

  • Majed A. Alotaibi

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Hasmat Malik

    (BEARS, NUS Campus, University Town, Singapore 138602, Singapore)

  • Mohammed E. Nassar

    (Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

Abstract

This paper demonstrates the investigation of the acquired outcomes from consistent information observing a 467.2 kWp solar photovoltaic (SPV) framework commissioned on the roofs of three separate high-rise buildings, which are located at the location of 26.9585° N and 80.9992° E. Onside real-time performance for this system was investigated for three years, 2018–2020; this system contains 1460 SPV panels of 320 Wp each, having 20 PV panels per string, 09 DC/AC power conditioning units (PCU), and a SCADA (supervisory control and data acquisition) system for monitoring the other necessary parts of a grid-interactive SPV system. The outcomes of the different buildings are compared with each other to analyze the power output at the same input conditions. Hardware components of the plants with approximately the same ratings (P 2 ~ 108.8 kWp + P 3 ~ 128 kWp) are compared (with P 1 ~ 230.4 kWp). Simulation modeling of the year 2020 in PVsyst tool for generated energy, Performance Ratio (PR), and Capacity Utilization Factor (CUF) are carried out additionally and compared with the installed rooftop grid-interactive SPV system of 467.2 kWp (~P 1 + P 2 + P 3 ) at the site. Numerous performance parameters such as array efficiency, inverter efficiency, system efficiency, Performance Ratio (PR), and Capacity Utilization Factor (CUF) of the plant are evaluated and compared with already installed systems in different regions of the world. These points demonstrate great feedback to framework architects, workers, designers, and energy suppliers regarding the genuine limit and plausibility of the framework they can offer to clients. Moreover, one of the environmental benefits of the SPV plant is that the 467.2 kWp PV framework reduces the tremendous measure of CO 2 , SO 2 , and NO X that is discharged into the air.

Suggested Citation

  • Ahmad Faiz Minai & Tahsin Usmani & Majed A. Alotaibi & Hasmat Malik & Mohammed E. Nassar, 2022. "Performance Analysis and Comparative Study of a 467.2 kWp Grid-Interactive SPV System: A Case Study," Energies, MDPI, vol. 15(3), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1107-:d:740843
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    2. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    3. Sugathan, Vipinraj & John, Elsa & Sudhakar, K., 2015. "Recent improvements in dye sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 54-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adu-Poku, Akwasi & Koku Aidam, God'sable Sitsofe & Jackson, Godfrey Atta & N'tsoukpoe, Kokouvi Edem & Kponyo, Jerry John & Messan, Adamah & Ikonne, Ozioma & Kwarteng, Wofa & Kemausuor, Francis, 2023. "Performance assessment and resilience of solar mini-grids for sustainable energy access in Ghana," Energy, Elsevier, vol. 285(C).
    2. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    2. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    3. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    4. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    5. Hai Lu & Jiaquan Yang & Kari Alanne, 2018. "Energy Quality Management for a Micro Energy Network Integrated with Renewables in a Tourist Area: A Chinese Case Study," Energies, MDPI, vol. 11(4), pages 1-24, April.
    6. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    7. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    8. Maddah, Hisham A. & Aryadwita, Lila & Berry, Vikas & Behura, Sanjay K., 2021. "Perovskite semiconductor-engineered cascaded molecular energy levels in naturally-sensitized photoanodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    10. Maqbool, Rashid, 2018. "Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective," Energy, Elsevier, vol. 158(C), pages 944-956.
    11. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    12. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    13. Bernardos, Eva & López, Ignacio & Rodríguez, Javier & Abánades, Alberto, 2013. "Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles," Energy Policy, Elsevier, vol. 62(C), pages 99-106.
    14. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    15. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    16. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    17. Andrea Micangeli & Davide Fioriti & Paolo Cherubini & Pablo Duenas-Martinez, 2020. "Optimal Design of Isolated Mini-Grids with Deterministic Methods: Matching Predictive Operating Strategies with Low Computational Requirements," Energies, MDPI, vol. 13(16), pages 1-19, August.
    18. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    19. Tehmina Zahid & Noman Arshed & Mubbasher Munir & Kamran Hameed, 2021. "Role of energy consumption preferences on human development: a study of SAARC region," Economic Change and Restructuring, Springer, vol. 54(1), pages 121-144, February.
    20. Elisa Peñalvo-López & Ángel Pérez-Navarro & Elías Hurtado & F. Javier Cárcel-Carrasco, 2019. "Comprehensive Methodology for Sustainable Power Supply in Emerging Countries," Sustainability, MDPI, vol. 11(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1107-:d:740843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.