IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p530-d723049.html
   My bibliography  Save this article

Increase the Efficiency of an Induction Motor Feed from Inverter for Low Frequencies by Combining Design and Control Improvements

Author

Listed:
  • Maria Dems

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Krzysztof Komeza

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Jacek Szulakowski

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Witold Kubiak

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

Speed-controlled induction motors have the most significant potential for energy savings. The greatest problems with obtaining high efficiency occur in motors with a wide range of rotational speed regulation, as in the motors for driving industrial washing machines under consideration. While for the highest speeds, the dominant phenomenon is at field weakening. The problem is obtaining the optimal size of the magnetic flux for low rotation speed to prevent excessive saturation increasing current, and reduction of efficiency. This problem is usually solved by selecting the appropriate control for an already built machine. The authors propose a combination of activities when designing the motor structure with the selection of proper control, which allows for high efficiency. Since the drive does not require precise speed control or obtaining the required dynamics, it was possible to use an inexpensive control in an open loop, avoiding the cost of transmitters. Furthermore, the number of design parameters that are subject to change is significantly limited by technological factors and the available space in the washing machine. Proper parameter selection was made using a peripheral method assisted by field-circuit simulations. The proposed approach can be used in designing structures and selecting motors controls for other applications.

Suggested Citation

  • Maria Dems & Krzysztof Komeza & Jacek Szulakowski & Witold Kubiak, 2022. "Increase the Efficiency of an Induction Motor Feed from Inverter for Low Frequencies by Combining Design and Control Improvements," Energies, MDPI, vol. 15(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:530-:d:723049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aswin Balasubramanian & Floran Martin & Md Masum Billah & Osaruyi Osemwinyen & Anouar Belahcen, 2021. "Application of Surrogate Optimization Routine with Clustering Technique for Optimal Design of an Induction Motor," Energies, MDPI, vol. 14(16), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mantas Plienis & Tomas Deveikis & Audrius Jonaitis & Saulius Gudžius, 2023. "Design of IOT-Based Framework for Evaluation of Energy Efficiency in Power Transformers," Energies, MDPI, vol. 16(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Torrent & Balduí Blanqué, 2021. "Influence of Equivalent Circuit Resistances on Operating Parameters on Three-Phase Induction Motors with Powers up to 50 kW," Energies, MDPI, vol. 14(21), pages 1-22, November.
    2. Anouar Belahcen & Armando Pires & Vitor Fernão Pires, 2023. "Magnetic Material Modelling of Electrical Machines," Energies, MDPI, vol. 16(2), pages 1-3, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:530-:d:723049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.