IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9469-d1002818.html
   My bibliography  Save this article

Energy Harvesting Using a Nonlinear Resonator with Asymmetric Potential Wells

Author

Listed:
  • Grzegorz Litak

    (Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland)

  • Piotr Wolszczak

    (Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland)

  • Jacek Caban

    (Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland)

  • Jerzy Margielewicz

    (Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Damian Gąska

    (Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Xiaoqing Ma

    (School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China)

  • Shengxi Zhou

    (School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

This paper presents the results of numerical simulations of a nonlinear bistable system for harvesting energy from ambient vibrating mechanical sources. Detailed model tests were carried out on an inertial energy harvesting system consisting of a piezoelectric beam with additional springs attached. The mathematical model was derived using the bond graph approach. Depending on the spring selection, the shape of the bistable potential wells was modified including the removal of wells’ degeneration. Consequently, the broken mirror symmetry between the potential wells led to additional solutions with corresponding voltage responses. The probability of occurrence for different high voltage/large orbit solutions with changes in potential symmetry was investigated. In particular, the periodicity of different solutions with respect to the harmonic excitation period were studied and compared in terms of the voltage output. The results showed that a large orbit period-6 subharmonic solution could be stabilized while some higher subharmonic solutions disappeared with the increasing asymmetry of potential wells. Changes in frequency ranges were also observed for chaotic solutions.

Suggested Citation

  • Grzegorz Litak & Piotr Wolszczak & Jacek Caban & Jerzy Margielewicz & Damian Gąska & Xiaoqing Ma & Shengxi Zhou, 2022. "Energy Harvesting Using a Nonlinear Resonator with Asymmetric Potential Wells," Energies, MDPI, vol. 15(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9469-:d:1002818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
    2. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Ruqi & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 369(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    2. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    3. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    4. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    5. Eghbali, Pejman & Younesian, Davood & Farhangdoust, Saman, 2020. "Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators," Applied Energy, Elsevier, vol. 270(C).
    6. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Liu, Mingyi & Lin, Rui & Zhou, Shengxi & Yu, Yilun & Ishida, Aki & McGrath, Margarita & Kennedy, Brook & Hajj, Muhammad & Zuo, Lei, 2018. "Design, simulation and experiment of a novel high efficiency energy harvesting paver," Applied Energy, Elsevier, vol. 212(C), pages 966-975.
    8. Grzegorz Litak & Jerzy Margielewicz & Damian Gąska & Piotr Wolszczak & Shengxi Zhou, 2021. "Multiple Solutions of the Tristable Energy Harvester," Energies, MDPI, vol. 14(5), pages 1-17, February.
    9. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
    10. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    11. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Qiao Li & Motohiko Murai & Syu Kuwada, 2018. "A Study on Electrical Power for Multiple Linear Wave Energy Converter Considering the Interaction Effect," Energies, MDPI, vol. 11(11), pages 1-20, November.
    13. Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
    14. Zhang, Zutao & Zhang, Xingtian & Rasim, Yagubov & Wang, Chunbai & Du, Bing & Yuan, Yanping, 2016. "Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators," Applied Energy, Elsevier, vol. 164(C), pages 152-161.
    15. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    16. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    17. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    18. Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    19. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    20. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9469-:d:1002818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.