IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9006-d986853.html
   My bibliography  Save this article

High-Power-Density DC–DC Converter Using a Fixed-Type Wireless Power Transmission Transformer with Ceramic Insulation Layer

Author

Listed:
  • Jeong-Sang Yoo

    (Department of Electronics Engineering, Cheongju University, Cheongju 28503, Republic of Korea)

  • Yong-Man Gil

    (Department of Electronics Engineering, Cheongju University, Cheongju 28503, Republic of Korea)

  • Tae-Young Ahn

    (Department of Electrical & Control Engineering, Cheongju University, Cheongju 28503, Republic of Korea)

Abstract

In this study, we propose the use of a short-distance and fixed-type wireless power transmission transformer via a half-bridge LLC resonant converter. A ceramic insulating layer was used instead of an air gap, meaning that the heat generated from the transformer core and the PCB winding was quickly transferred to the external metal case, with the ceramic insulating layer acting as a heat pipe. In order to stabilize the output voltage, we proposed the use of IR photo tunnel technology, and it was applied to two ceramic insulating layers so that the voltage error signal of the secondary output voltage could be transmitted as light to the primary side. As a result, it was possible to physically separate the primary and secondary sides of the power circuit centering on the ceramic insulating layer. The experiment was carried out with the input voltage of 400 V, the output voltage of 54 V, the maximum output power of 1 kW, and the switching frequency of 1.3 MHz or higher. As a result, the maximum operating frequency was 1.83 MHz, and the output voltage stability to the load was 0.49% or lower. The power density of the experimental circuit was 380 W / in 3 or higher, and the maximum power conversion efficiency was approximately 93% or higher.

Suggested Citation

  • Jeong-Sang Yoo & Yong-Man Gil & Tae-Young Ahn, 2022. "High-Power-Density DC–DC Converter Using a Fixed-Type Wireless Power Transmission Transformer with Ceramic Insulation Layer," Energies, MDPI, vol. 15(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9006-:d:986853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeong-Sang Yoo & Yong-Man Gil & Tae-Young Ahn, 2022. "Steady-State Analysis and Optimal Design of an LLC Resonant Converter Considering Internal Loss Resistance," Energies, MDPI, vol. 15(21), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josué Lara-Reyes & Mario Ponce-Silva & Leobardo Hernández-González & Susana E. DeLeón-Aldaco & Claudia Cortés-García & Jazmin Ramirez-Hernandez, 2022. "Series RLC Resonant Circuit Used as Frequency Multiplier," Energies, MDPI, vol. 15(24), pages 1-18, December.
    2. M. S. Priyadarshini & D. Krishna & Kurakula Vimala Kumar & K. Amaresh & B. Srikanth Goud & Mohit Bajaj & Torki Altameem & Walid El-Shafai & Mostafa M. Fouda, 2023. "Significance of Harmonic Filters by Computation of Short-Time Fourier Transform-Based Time–Frequency Representation of Supply Voltage," Energies, MDPI, vol. 16(5), pages 1-25, February.
    3. Songyan Niu & Qingyu Zhao & Haibiao Chen & Hang Yu & Shuangxia Niu & Linni Jian, 2022. "Underwater Wireless Charging System of Unmanned Surface Vehicles with High Power, Large Misalignment Tolerance and Light Weight: Analysis, Design and Optimization," Energies, MDPI, vol. 15(24), pages 1-19, December.
    4. Umut Ondin & Abdulkadir Balikci, 2023. "A Transformer Design for High-Voltage Application Using LLC Resonant Converter," Energies, MDPI, vol. 16(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9006-:d:986853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.