IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8768-d979759.html
   My bibliography  Save this article

Review on the Conflicts between Offshore Wind Power and Fishery Rights: Marine Spatial Planning in Taiwan

Author

Listed:
  • Hsin-Hua Tsai

    (Department of Shipping and Transportation Management, National Taiwan Ocean University, Keelung 20224, Taiwan)

  • Huan-Sheng Tseng

    (Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung 20224, Taiwan)

  • Chun-Kai Huang

    (Faculty of Law, Humboldt University of Berlin, 10099 Berlin, Germany)

  • Su-Chun Yu

    (Department of Risk Management and Insurance, National Chengchi University, Taipei 116011, Taiwan)

Abstract

In recent years, Taiwan has firmly committed itself to pursue the green energy transition and a nuclear-free homeland by 2025, with an increase in renewable energy from 5% in 2016 to 20% in 2025. Offshore wind power (OWP) has become a sustainable and scalable renewable energy source in Taiwan. Maritime Spatial Planning (MSP) is a fundamental tool to organize the use of the ocean space by different and often conflicting multi-users within ecologically sustainable boundaries in the marine environment. MSP is capable of definitively driving the use of offshore renewable energy. Lessons from Germany and the UK revealed that MSP was crucial to the development of OWP. This paper aims to evaluate how MSP is able to accommodate the exploitation of OWP in Taiwan and contribute to the achievement of marine policy by proposing a set of recommendations. It concludes that MSP is emerging as a solution to be considered by government institutions to optimize the multiple use of the ocean space, reduce conflicts and make use of the environmental and economic synergies generated by the joint deployment of OWP facilities and fishing or aquaculture activities for the conservation and protection of marine environments.

Suggested Citation

  • Hsin-Hua Tsai & Huan-Sheng Tseng & Chun-Kai Huang & Su-Chun Yu, 2022. "Review on the Conflicts between Offshore Wind Power and Fishery Rights: Marine Spatial Planning in Taiwan," Energies, MDPI, vol. 15(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8768-:d:979759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Punt, Maarten J. & Groeneveld, Rolf A. & van Ierland, Ekko C. & Stel, Jan H., 2009. "Spatial planning of offshore wind farms: A windfall to marine environmental protection?," Ecological Economics, Elsevier, vol. 69(1), pages 93-103, November.
    2. Ashley, M.C. & Mangi, S.C. & Rodwell, L.D., 2014. "The potential of offshore windfarms to act as marine protected areas – A systematic review of current evidence," Marine Policy, Elsevier, vol. 45(C), pages 301-309.
    3. Kao, Shih-Ming & Pearre, Nathaniel S., 2017. "Administrative arrangement for offshore wind power developments in Taiwan: Challenges and prospects," Energy Policy, Elsevier, vol. 109(C), pages 463-472.
    4. Quero García, Pablo & Chica Ruiz, Juan Adolfo & García Sanabria, Javier, 2020. "Blue energy and marine spatial planning in Southern Europe," Energy Policy, Elsevier, vol. 140(C).
    5. Todd, Paul, 2012. "Marine renewable energy and public rights," Marine Policy, Elsevier, vol. 36(3), pages 667-672.
    6. Jay, Stephen, 2011. "Mobilising for marine wind energy in the United Kingdom," Energy Policy, Elsevier, vol. 39(7), pages 4125-4133, July.
    7. Huey-Shian Chung, 2021. "Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    8. Ehler, Charles, 2008. "Conclusions: Benefits, lessons learned, and future challenges of marine spatial planning," Marine Policy, Elsevier, vol. 32(5), pages 840-843, September.
    9. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    10. Scarff, Gavin & Fitzsimmons, Clare & Gray, Tim, 2015. "The new mode of marine planning in the UK: Aspirations and challenges," Marine Policy, Elsevier, vol. 51(C), pages 96-102.
    11. Yu, Hsiang-Hua & Chang, Kuo-Hao & Hsu, Hsin-Wei & Cuckler, Robert, 2019. "A Monte Carlo simulation-based decision support system for reliability analysis of Taiwan’s power system: Framework and empirical study," Energy, Elsevier, vol. 178(C), pages 252-262.
    12. Florian Kern & Adrian Smith & Chris Shaw & Rob Raven & Bram Verhees, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," SPRU Working Paper Series 2014-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quero García, Pablo & Chica Ruiz, Juan Adolfo & García Sanabria, Javier, 2020. "Blue energy and marine spatial planning in Southern Europe," Energy Policy, Elsevier, vol. 140(C).
    2. Wright, Glen & O’Hagan, Anne Marie & de Groot, Jiska & Leroy, Yannick & Soininen, Niko & Salcido, Rachael & Castelos, Montserrat Abad & Jude, Simon & Rochette, Julien & Kerr, Sandy, 2016. "Establishing a legal research agenda for ocean energy," Marine Policy, Elsevier, vol. 63(C), pages 126-134.
    3. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    4. Mäkitie, Tuukka & Normann, Håkon E. & Thune, Taran M. & Sraml Gonzalez, Jakoba, 2019. "The green flings: Norwegian oil and gas industry’s engagement in offshore wind power," Energy Policy, Elsevier, vol. 127(C), pages 269-279.
    5. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    6. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Lowes, Richard & Woodman, Bridget, 2020. "Disruptive and uncertain: Policy makers’ perceptions on UK heat decarbonisation," Energy Policy, Elsevier, vol. 142(C).
    8. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    9. Stuti Haldar, 2022. "A landscape level analysis of entrepreneurship and sustainable energy transitions: Evidences from Gujarat, India," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 489-502, August.
    10. Tyfield, David & Zuev, Dennis, 2018. "Stasis, dynamism and emergence of the e-mobility system in China: A power relational perspective," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 259-270.
    11. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    12. Ćetković, Stefan & Buzogány, Aron, 2020. "Between markets, politics and path-dependence: Explaining the growth of solar and wind power in six Central and Eastern European countries," Energy Policy, Elsevier, vol. 139(C).
    13. John Aldersey-Williams & Peter A. Strachan & Ian D. Broadbent, 2020. "Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables," Energies, MDPI, vol. 13(24), pages 1-21, December.
    14. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Jens Lüdeke, 2017. "Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-31, March.
    16. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    17. van der Loos, Adriaan & Langeveld, Rowan & Hekkert, Marko & Negro, Simona & Truffer, Bernhard, 2022. "Developing local industries and global value chains: The case of offshore wind," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    18. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    19. Geels, F.W. & McMeekin, A. & Pfluger, B., 2020. "Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: Bridging computer models and the multi-level perspective in UK electricity gen," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    20. Jasminka Young & Aleksandar Macura, 2023. "Forging Local Energy Transition in the Most Carbon-Intensive European Region of the Western Balkans," Energies, MDPI, vol. 16(4), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8768-:d:979759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.