IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8313-d965610.html
   My bibliography  Save this article

Energy Saving by Parametric Optimization and Advanced Lubri-Cooling Techniques in the Machining of Composites and Superalloys: A Systematic Review

Author

Listed:
  • Rüstem Binali

    (Department of Mechanical Engineering, Faculty of Technology, Selcuk University, Konya 42130, Turkey)

  • Abhishek Dhananjay Patange

    (Department of Mechanical Engineering, College of Engineering Pune, Pune 411005, India)

  • Mustafa Kuntoğlu

    (Department of Mechanical Engineering, Faculty of Technology, Selcuk University, Konya 42130, Turkey)

  • Tadeusz Mikolajczyk

    (Department of Production Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

  • Emin Salur

    (Technology Faculty, Metallurgical and Material Engineering Department, Selcuk University, Selçuklu, Konya 42130, Turkey)

Abstract

The resources of the earth are being consumed day by day with the increasing population and necessities of humankind in many areas, such as industrial applications and basic needs in houses, workplaces and transportation. As a consequence, careful usage of the energy sources and the conversed energy is of great importance in order to obtain sustainable development. Machining operations have a large percentage of all manufacturing methods in terms of depleted energy which gives them a high potential for reducing the total energy consumption. The approaches handled in the literature for the minimization of the consumed energy in the machining industry were considered in this study. While several machinability characteristics under different machining processes were investigated broadly in the context of composites and superalloys, the comparison of these systems has been given cursory attention in the current literature, specifically for cutting energy saving. The overall performance of these group material systems utilizing widely in numerous significant industrial areas supplies important signs about manufacturing costs, service conditions and environmental impacts. It is highly crucial to monitor the indicators of energy-saving phenomena of the machined parts since the mechanisms behind the energy consumption of these systems is very complex and dynamic owing to different process-induced variables. This well-organized review paper distinguishes itself from previous studies in this field since the comprehensive literature survey paves the way for diverse approaches that regard energy saving, especially for composites and superalloys under different machining operations. This overview paper aims to contribute to the current literature by highlighting the effects of the state-of-the-art approaches in reducing energy consumption in the machining of industrially important materials. This study can also establish a framework in the context of the process-property interactions to comprehend the influence of energy-saving mechanisms through machining in a system of interest.

Suggested Citation

  • Rüstem Binali & Abhishek Dhananjay Patange & Mustafa Kuntoğlu & Tadeusz Mikolajczyk & Emin Salur, 2022. "Energy Saving by Parametric Optimization and Advanced Lubri-Cooling Techniques in the Machining of Composites and Superalloys: A Systematic Review," Energies, MDPI, vol. 15(21), pages 1-37, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8313-:d:965610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Monastersky, 2013. "Global carbon dioxide levels near worrisome milestone," Nature, Nature, vol. 497(7447), pages 13-14, May.
    2. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Alberto-Jesus Perea-Moreno, 2021. "Renewable Energy and Energy Saving: Worldwide Research Trends," Sustainability, MDPI, vol. 13(23), pages 1-3, November.
    4. Piero Mella, 2022. "Global Warming: Is It (Im)Possible to Stop It? The Systems Thinking Approach," Energies, MDPI, vol. 15(3), pages 1-33, January.
    5. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    6. Zhao, G.Y. & Liu, Z.Y. & He, Y. & Cao, H.J. & Guo, Y.B., 2017. "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, Elsevier, vol. 133(C), pages 142-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Sommer & Kurt Kratena, 2016. "The Carbon Footprint of European Households and Income Distribution. WWWforEurope Working Paper No. 113," WIFO Studies, WIFO, number 58787.
    2. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    3. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    4. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    5. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    6. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    7. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    8. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    9. Mithila Seva Bala Sundaram & ChiaKwang Tan & Jeyraj Selvaraj & Ab. Halim Abu Bakar, 2023. "Energy Savings for Various Residential Appliances and Distribution Networks in a Malaysian Scenario," Energies, MDPI, vol. 16(13), pages 1-18, June.
    10. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    11. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    12. Manfred Lenzen & Roberto Schaeffer & Jonas Karstensen & Glen Peters, 2013. "Drivers of change in Brazil’s carbon dioxide emissions," Climatic Change, Springer, vol. 121(4), pages 815-824, December.
    13. Tao Lin & Yunjun Yu & Xuemei Bai & Ling Feng & Jin Wang, 2013. "Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    14. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    15. Shailendra Pawanr & Kapil Gupta, 2024. "A Review on Recent Advances in the Energy Efficiency of Machining Processes for Sustainability," Energies, MDPI, vol. 17(15), pages 1-21, July.
    16. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    17. Ali Cenap Yologlu & Bulent Halisdemir, 2024. "Understanding the Social Determinants of Household Carbon Emissions for Carbon Mitigation Policies: The Case of Mersin, Turkey," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    18. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    19. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
    20. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8313-:d:965610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.