IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8231-d963043.html
   My bibliography  Save this article

Analysis of Heat Flow for In Vitro Culture Monitored by Impedance Measurement

Author

Listed:
  • Andrzej Kociubiński

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Ul. Nadbystrzycka 38a, 20-618 Lublin, Poland)

  • Dawid Zarzeczny

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Ul. Nadbystrzycka 38a, 20-618 Lublin, Poland)

  • Mariusz Duk

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Ul. Nadbystrzycka 38a, 20-618 Lublin, Poland)

  • Tomasz Bieniek

    (Łukasiewicz Research Network—Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland)

Abstract

The paper proposes an innovative method of using microheaters for research on cells in vitro. A method of local heating of a single culture well, compatible with an Electric Cell-substrate Impedance (ECIS) system is presented. A microheater and culture well system for cell culture was modelled. Electrical and thermal simulation of the system under operating conditions was carried out. Correct distribution of heat was observed at the site of the cell culture suspension in the medium, while not affecting the conditions in adjacent wells. As part of the experiment, a heating element of nichrome (NiCr) was created using the magnetron sputtering process. Electrical and thermal measurements of the manufactured device were carried out. It has been shown that it is possible to establish the desired temperature over the long term. In addition, the structures made were characterised by work stability, precision in maintaining the right temperature, and the possibility of being controlled with high accuracy. There is a problem with the precise and reproducible carrying out of a cell culture experiment that differs only in the process temperature. In this work, a technique for increasing the temperature locally, in a single culture well, in a medium containing eight such wells was proposed and analyzed. The use of this method will allow avoidance of the impact of potential changes in parameters other than temperature on the culture. That may occur when comparing cells grown at different temperatures by means of the ECIS (Electric Cell-substrate Impedance) method.

Suggested Citation

  • Andrzej Kociubiński & Dawid Zarzeczny & Mariusz Duk & Tomasz Bieniek, 2022. "Analysis of Heat Flow for In Vitro Culture Monitored by Impedance Measurement," Energies, MDPI, vol. 15(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8231-:d:963043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong-Wook Oh, 2020. "Thermal Property Measurement of Nanofluid Droplets with Temperature Gradients," Energies, MDPI, vol. 13(1), pages 1-12, January.
    2. Rezania, A. & Rosendahl, L.A., 2012. "Thermal effect of a thermoelectric generator on parallel microchannel heat sink," Energy, Elsevier, vol. 37(1), pages 220-227.
    3. Yonghyeon Kim & Hyeokjoo Choi & Seokhun Kwon & Seokwon Lee & Hyunil Kang & Wonseok Choi, 2021. "Thermal Analysis of Energy Storage Capacity According to Thickness of Nickel/Chromium Alloy Layer," Energies, MDPI, vol. 14(11), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
    2. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    3. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    4. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K. & Ismail, A.K., 2015. "Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power," Renewable Energy, Elsevier, vol. 74(C), pages 505-516.
    5. Ma, Ting & Pandit, Jaideep & Ekkad, Srinath V. & Huxtable, Scott T. & Wang, Qiuwang, 2015. "Simulation of thermoelectric-hydraulic performance of a thermoelectric power generator with longitudinal vortex generators," Energy, Elsevier, vol. 84(C), pages 695-703.
    6. He, Wei & Wang, Shixue & Zhang, Xing & Li, Yanzhe & Lu, Chi, 2015. "Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat," Energy, Elsevier, vol. 91(C), pages 1-9.
    7. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    8. Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
    9. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    10. Lu, Hongliang & Wu, Ting & Bai, Shengqiang & Xu, Kangcong & Huang, Yingjie & Gao, Weimin & Yin, Xianglin & Chen, Lidong, 2013. "Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator," Energy, Elsevier, vol. 54(C), pages 372-377.
    11. F. P. Brito & João Silva Peixoto & Jorge Martins & António P. Gonçalves & Loucas Louca & Nikolaos Vlachos & Theodora Kyratsi, 2021. "Analysis and Design of a Silicide-Tetrahedrite Thermoelectric Generator Concept Suitable for Large-Scale Industrial Waste Heat Recovery," Energies, MDPI, vol. 14(18), pages 1-21, September.
    12. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    13. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    14. Mirosław Neska & Mirosław Mrozek & Marta Żurek-Mortka & Andrzej Majcher, 2021. "Analysis of the Parameters of the Two-Sections Hot Side Heat Exchanger of the Module with Thermoelectric Generators," Energies, MDPI, vol. 14(16), pages 1-15, August.
    15. Aranguren, Patricia & Astrain, David & Pérez, Miren Gurutze, 2014. "Computational and experimental study of a complete heat dissipation system using water as heat carrier placed on a thermoelectric generator," Energy, Elsevier, vol. 74(C), pages 346-358.
    16. Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
    17. Björn Pfeiffelmann & Ali Cemal Benim & Franz Joos, 2021. "Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review," Energies, MDPI, vol. 14(24), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8231-:d:963043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.