IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v37y2012i1p220-227.html
   My bibliography  Save this article

Thermal effect of a thermoelectric generator on parallel microchannel heat sink

Author

Listed:
  • Rezania, A.
  • Rosendahl, L.A.

Abstract

Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied on the hot surface of the TEG. By considering the maximum temperature limitation for Bi2Te3 material and using the microchannel heat sink for cooling down the TEG system, an optimum pumping power is achieved. The results are in a good agreement with the previous experimental and theoretical studies.

Suggested Citation

  • Rezania, A. & Rosendahl, L.A., 2012. "Thermal effect of a thermoelectric generator on parallel microchannel heat sink," Energy, Elsevier, vol. 37(1), pages 220-227.
  • Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:220-227
    DOI: 10.1016/j.energy.2011.11.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.11.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
    2. Aranguren, Patricia & Astrain, David & Pérez, Miren Gurutze, 2014. "Computational and experimental study of a complete heat dissipation system using water as heat carrier placed on a thermoelectric generator," Energy, Elsevier, vol. 74(C), pages 346-358.
    3. Ma, Ting & Pandit, Jaideep & Ekkad, Srinath V. & Huxtable, Scott T. & Wang, Qiuwang, 2015. "Simulation of thermoelectric-hydraulic performance of a thermoelectric power generator with longitudinal vortex generators," Energy, Elsevier, vol. 84(C), pages 695-703.
    4. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K. & Ismail, A.K., 2015. "Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power," Renewable Energy, Elsevier, vol. 74(C), pages 505-516.
    5. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    6. Lu, Hongliang & Wu, Ting & Bai, Shengqiang & Xu, Kangcong & Huang, Yingjie & Gao, Weimin & Yin, Xianglin & Chen, Lidong, 2013. "Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator," Energy, Elsevier, vol. 54(C), pages 372-377.
    7. He, Wei & Wang, Shixue & Zhang, Xing & Li, Yanzhe & Lu, Chi, 2015. "Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat," Energy, Elsevier, vol. 91(C), pages 1-9.
    8. Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
    9. Andrzej Kociubiński & Dawid Zarzeczny & Mariusz Duk & Tomasz Bieniek, 2022. "Analysis of Heat Flow for In Vitro Culture Monitored by Impedance Measurement," Energies, MDPI, vol. 15(21), pages 1-15, November.
    10. Mirosław Neska & Mirosław Mrozek & Marta Żurek-Mortka & Andrzej Majcher, 2021. "Analysis of the Parameters of the Two-Sections Hot Side Heat Exchanger of the Module with Thermoelectric Generators," Energies, MDPI, vol. 14(16), pages 1-15, August.
    11. F. P. Brito & João Silva Peixoto & Jorge Martins & António P. Gonçalves & Loucas Louca & Nikolaos Vlachos & Theodora Kyratsi, 2021. "Analysis and Design of a Silicide-Tetrahedrite Thermoelectric Generator Concept Suitable for Large-Scale Industrial Waste Heat Recovery," Energies, MDPI, vol. 14(18), pages 1-21, September.
    12. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    13. Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
    14. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    15. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    16. Björn Pfeiffelmann & Ali Cemal Benim & Franz Joos, 2021. "Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review," Energies, MDPI, vol. 14(24), pages 1-29, December.
    17. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:37:y:2012:i:1:p:220-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.