IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8223-d962688.html
   My bibliography  Save this article

Coupled Model and Node Importance Evaluation of Electric Power Cyber-Physical Systems Considering Carbon Power Flow

Author

Listed:
  • Chao Yang

    (Information and Communication Company, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110006, China)

  • Heyang Sun

    (Research Institute, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110000, China)

  • Tong Li

    (Research Institute, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110000, China)

  • Hengji Xie

    (Beijing Energy and Power Information Security Engineering Technology Research Center, North China Electric Power University, Changping District, Beijing 102206, China)

  • Zhenjiang Lei

    (Information and Communication Company, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110006, China)

  • Jinliang Song

    (Research Institute, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110000, China)

  • He Cai

    (Beijing Energy and Power Information Security Engineering Technology Research Center, North China Electric Power University, Changping District, Beijing 102206, China)

  • Jiaxuan Yang

    (Beijing Energy and Power Information Security Engineering Technology Research Center, North China Electric Power University, Changping District, Beijing 102206, China)

  • Gangjun Gong

    (Beijing Energy and Power Information Security Engineering Technology Research Center, North China Electric Power University, Changping District, Beijing 102206, China)

  • Shuai Ren

    (Research Institute, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110000, China)

Abstract

To improve the distributed carbon emission optimization control capability of the smart distribution network system, thereby reducing the carbon emissions in the distribution process, it is a very important issue to comprehensively analyze the importance of the node carbon emission flow of the smart distribution network. This paper transforms the power grid into a carbon emission flow network through power flow calculations: Based on the complex network theory, it determines the coupling scale of the two networks by means of the correlation coefficient method and the correlation matrix method, and establishes a coupling network model based on the carbon emission flow network; Combining the different business characteristics of carbon emission flow and information flow, an evaluation index system considering the dual-network coupling scale is established, and a multi-indicator comprehensive evaluation method that combines the Topsis and grey relational analysis method, that can objectively evaluate indicators that contain subjective components was proposed; The obtained node importance values can be used to determine the relative key line, greater sum node importance values represent a greater carbon emission impact of the line, providing a sequential basis for the carbon reduction and restructuring of the distribution network; Taking the 3-machine 9-node system as an example, the carbon flow distribution in the corresponding network is calculated, and the comprehensive importance value of the coupling node is calculated to analyze the rationality of this method.

Suggested Citation

  • Chao Yang & Heyang Sun & Tong Li & Hengji Xie & Zhenjiang Lei & Jinliang Song & He Cai & Jiaxuan Yang & Gangjun Gong & Shuai Ren, 2022. "Coupled Model and Node Importance Evaluation of Electric Power Cyber-Physical Systems Considering Carbon Power Flow," Energies, MDPI, vol. 15(21), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8223-:d:962688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Yang & Xin Feng & Yufei Tang & Jun Yan & Haibo He & Chao Luo, 2015. "A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers," Energies, MDPI, vol. 8(9), pages 1-20, August.
    2. Apergis, Nicholas & Payne, James E., 2010. "The emissions, energy consumption, and growth nexus: Evidence from the commonwealth of independent states," Energy Policy, Elsevier, vol. 38(1), pages 650-655, January.
    3. Salum Bakar Khamis & Prof. Fuzhong Chen, 2022. "The Impact of Carbon Emission (co2) on Economic Growth: Evidence from Sub-Saharan Africa," International Journal of Science and Business, IJSAB International, vol. 15(1), pages 19-27.
    4. Namaki, A. & Shirazi, A.H. & Raei, R. & Jafari, G.R., 2011. "Network analysis of a financial market based on genuine correlation and threshold method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3835-3841.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    2. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    3. Sohail Abbas & Shazia Kousar & Amber Pervaiz, 2021. "Effects of energy consumption and ecological footprint on CO2 emissions: an empirical evidence from Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13364-13381, September.
    4. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    5. Gengnan Chiang & Ming-Yi Wu, 2017. "The Richer the Greener: Evidence from G7 Countries," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(10), pages 11-20, October.
    6. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    7. Farhani, Sahbi & Mrizak, Sana & Chaibi, Anissa & Rault, Christophe, 2014. "The environmental Kuznets curve and sustainability: A panel data analysis," Energy Policy, Elsevier, vol. 71(C), pages 189-198.
    8. Al-Mulali, Usama & Ozturk, Ilhan, 2016. "The investigation of environmental Kuznets curve hypothesis in the advanced economies: The role of energy prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1622-1631.
    9. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    10. Brini, Riadh & Amara, Mohamed & Jemmali, Hatem, 2017. "Renewable energy consumption, International trade, oil price and economic growth inter-linkages: The case of Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 620-627.
    11. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    12. Juha Itkonen, 2010. "Internal Validity of Estimating the Carbon Kuznets Curve by Controlling for Energy Use," ifo Working Paper Series 95, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    13. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    14. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    15. Hocaoglu, Fatih Onur & Karanfil, Fatih, 2011. "Examining the link between carbon dioxide emissions and the share of industry in GDP: Modeling and testing for the G-7 countries," Energy Policy, Elsevier, vol. 39(6), pages 3612-3620, June.
    16. Kyoung-Min Lim & Seul-Ye Lim & Seung-Hoon Yoo, 2014. "Oil Consumption, CO 2 Emission, and Economic Growth: Evidence from the Philippines," Sustainability, MDPI, vol. 6(2), pages 1-13, February.
    17. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    18. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    19. Bella, Giovanni & Massidda, Carla & Mattana, Paolo, 2014. "The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries," Journal of Policy Modeling, Elsevier, vol. 36(6), pages 970-985.
    20. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8223-:d:962688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.