IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8163-d960495.html
   My bibliography  Save this article

Environmental Impact Comparison of Geothermal Alternatives for Conventional Boiler Replacement

Author

Listed:
  • Carlos Lorente Rubio

    (Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Jorge Luis García-Alcaraz

    (Department of Industrial and Manufacturing Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez 32315, Mexico)

  • Juan Carlos Sáenz-Diez Muro

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Eduardo Martínez-Cámara

    (Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Agostino Bruzzone

    (DIME (Department of Mechanical, Energy, Management and Transport Engineering), University of Genoa, Via Opera Pia, 15, 16145 Genova, Italy)

  • Julio Blanco-Fernández

    (Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain)

Abstract

In the transition towards a sustainable world with a “green horizon” (something that is also of great importance to the policy of energy self-sufficiency in housing and self-consumption), geothermal energy is seen as quite a feasible alternative for single-family homes. This article focuses on a comparison between the environmental impact and life cycle analysis of three alternatives and provides a base case for the replacement of a conventional type of boiler with a geothermal one for a typical house located in a Mediterranean climate. The first alternative (A) consists of a horizontal catchment system through a field of geothermal probes. The second alternative (B) is a shallow water catchment system, open type, with the return of water to a nearby river. The third option studied (C) is also a shallow water catchment system but with the water, return injected into a well downstream to the underground water flow. The study shows that alternatives A and B have the least environmental impact in most of the categories studied. The total amortization periods for the three alternatives and the base case differ by almost two years, with alternative A taking 6.99 years and alternative C costing 8.82 years.

Suggested Citation

  • Carlos Lorente Rubio & Jorge Luis García-Alcaraz & Juan Carlos Sáenz-Diez Muro & Eduardo Martínez-Cámara & Agostino Bruzzone & Julio Blanco-Fernández, 2022. "Environmental Impact Comparison of Geothermal Alternatives for Conventional Boiler Replacement," Energies, MDPI, vol. 15(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8163-:d:960495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    2. Cristina Sáez Blázquez & David Borge-Diez & Ignacio Martín Nieto & Miguel Ángel Maté-González & Arturo Farfán Martín & Diego González-Aguilera, 2022. "Geothermal Heat Pumps for Slurry Cooling and Farm Heating: Impact and Carbon Footprint Reduction in Pig Farms," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    3. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    4. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    5. Antonio Novelli & Valentina D’Alonzo & Simon Pezzutto & Rubén Aarón Estrada Poggio & Alessandro Casasso & Pietro Zambelli, 2021. "A Spatially-Explicit Economic and Financial Assessment of Closed-Loop Ground-Source Geothermal Heat Pumps: A Case Study for the Residential Buildings of Valle d’Aosta Region," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    6. George Kyriakarakos & Erika Ntavou & Dimitris Manolakos, 2020. "Investigation of the Use of Low Temperature Geothermal Organic Rankine Cycle Engine in an Autonomous Polygeneration Microgrid," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    7. Hanbury, O. & Vasquez, V.R., 2018. "Life cycle analysis of geothermal energy for power and transportation: A stochastic approach," Renewable Energy, Elsevier, vol. 115(C), pages 371-381.
    8. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    9. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    10. Michal Vokurka & Antonín Kunz, 2022. "Case Study of Using the Geothermal Potential of Mine Water for Central District Heating—The Rožná Deposit, Czech Republic," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    11. Jeong-Heum Cho & Yujin Nam & Hyoung-Chan Kim, 2016. "Performance and Feasibility Study of a Standing Column Well (SCW) System Using a Deep Geothermal Well," Energies, MDPI, vol. 9(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    3. Lorente-Rubio, C. & García-Alcaraz, J.L. & Sáenz-Diez Muro, J.C. & Martínez-Cámara, E. & Bruzzone, A. & Blanco-Fernández, J., 2024. "Scenarios for replacement of electric resistive space heating by a geothermal heat pump - Environmental amortization," Renewable Energy, Elsevier, vol. 227(C).
    4. Sagar Shelare & Ravinder Kumar & Trupti Gajbhiye & Sumit Kanchan, 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges," Energies, MDPI, vol. 16(6), pages 1-22, March.
    5. Tsagarakis, Konstantinos P., 2020. "Shallow geothermal energy under the microscope: Social, economic, and institutional aspects," Renewable Energy, Elsevier, vol. 147(P2), pages 2801-2808.
    6. Ismael Pérez-Franco & Agustín García-García & Juan J. Maldonado-Briegas, 2020. "Energy Transition Towards a Greener and More Competitive Economy: The Iberian Case," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    7. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M., 2014. "Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 290-298.
    8. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    9. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    10. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    11. Wan-Lin Yong & Jerome Kueh & Yong Sze Wei & Jang-Haw Tiang, 2020. "Energy Consumption and Economic Growth Nexus in China: Autoregressive Distributed Lag (ARDL)," Journal of Public Administration and Governance, Macrothink Institute, vol. 10(2), pages 194212-1942, December.
    12. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    13. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    14. Wei Wang & Kehui Wei & Oleksandr Kubatko & Vladyslav Piven & Yulija Chortok & Oleksandr Derykolenko, 2023. "Economic Growth and Sustainable Transition: Investigating Classical and Novel Factors in Developed Countries," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    15. Inglesi-Lotz, Roula, 2016. "The impact of renewable energy consumption to economic growth: A panel data application," Energy Economics, Elsevier, vol. 53(C), pages 58-63.
    16. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    17. Oosthuizen, Anna Maria & Inglesi-Lotz, Roula & Thopil, George Alex, 2022. "The relationship between renewable energy and retail electricity prices: Panel evidence from OECD countries," Energy, Elsevier, vol. 238(PB).
    18. Udi Joshua & Festus V. Bekun & Samuel A. Sarkodie, 2020. "New Insight into the Causal Linkage between Economic Expansion, FDI, Coal consumption, Pollutant emissions and Urbanization in South Africa," Working Papers 20/011, European Xtramile Centre of African Studies (EXCAS).
    19. Apergis, Nicholas & Payne, James E., 2011. "The renewable energy consumption-growth nexus in Central America," Applied Energy, Elsevier, vol. 88(1), pages 343-347, January.
    20. Bashiri Behmiri, Niaz & Pires Manso, José R., 2012. "Does Portuguese economy support crude oil conservation hypothesis?," Energy Policy, Elsevier, vol. 45(C), pages 628-634.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8163-:d:960495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.