IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7940-d953296.html
   My bibliography  Save this article

Fracture Mechanism of Crack-Containing Strata under Combined Static and Harmonic Dynamic Loads Based on Extended Finite Elements

Author

Listed:
  • Haiping Zhang

    (State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China)

  • Siqi Li

    (Institute of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Zhuo Chen

    (Institute of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Yeshuang Tong

    (Institute of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Zhuolun Li

    (Institute of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Siqi Wang

    (Institute of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

Abstract

Based on the existing research results, a theoretical fracture model of strata under the compound impact of static and harmonic dynamic load is improved, and the fracture characteristic parameters (stress intensity factor, T-stress, and fracture initiation angle) under the two far-field stress are determined according to the crack dip angle. Additionally, the effects of harmonic dynamic load on the distribution of the stress field and the fracture characteristic (the crack initiation angle, the fracture degree, the number of fracture units, and the fracture area) are further calculated and discussed by theoretical model solution, extended finite element simulation, and the secondary development of the simulation module, respectively. The research results show that the far-field stress, stress intensity factor, and T-stress vary in harmonic form with time under the compound impact of static and harmonic dynamic loads. The frequency of dynamic load affects the number of reciprocal fluctuations of stress intensity factor and T-stress as well as the crack initiation time, but has less influence on the crack initiation angle and fracture degree. While the amplitude of dynamic load affects the stress intensity factor, the extreme value of T-stress and fracture characteristics of the crack. This study has theoretical guiding significance for parameters’ optimization and realization of resonance impact drilling technology.

Suggested Citation

  • Haiping Zhang & Siqi Li & Zhuo Chen & Yeshuang Tong & Zhuolun Li & Siqi Wang, 2022. "Fracture Mechanism of Crack-Containing Strata under Combined Static and Harmonic Dynamic Loads Based on Extended Finite Elements," Energies, MDPI, vol. 15(21), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7940-:d:953296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7940/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7940/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Kong & Lishuai Jiang & Jinquan Jiang & Yongning Wu & Lianjun Chen & Jianguo Ning, 2019. "Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads," Energies, MDPI, vol. 12(19), pages 1-19, September.
    2. Siqi Li & Shenglei Tian & Wei Li & Xin Ling & Marcin Kapitaniak & Vahid Vaziri, 2020. "Numerical Study on the Elastic Deformation and the Stress Field of Brittle Rocks under Harmonic Dynamic Load," Energies, MDPI, vol. 13(4), pages 1-16, February.
    3. Jing Jin & Xiaoyong Liang & Guangqing Yang & Yitao Zhou, 2022. "Test Studies on Geogrid–Soil Interface Behavior under Static and Dynamic Loads," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Cui & Tinghui Zhang & Xingping Lai & Jiantao Cao & Pengfei Shan, 2019. "Study on the Evolution Law of Overburden Breaking Angle under Repeated Mining and the Application of Roof Pressure Relief," Energies, MDPI, vol. 12(23), pages 1-20, November.
    2. Yushan Song & Yuqing Fan & Huaming An & Hongyuan Liu & Shunchuan Wu, 2022. "Investigation of the Dynamic Pure-Mode-II Fracture Initiation and Propagation of Rock during Four-Point Bending Test Using Hybrid Finite–Discrete Element Method," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    3. Jianju Ren & Wenlong Zhang & Hongmei Zhang & Honggang Kou, 2022. "Occurrence Location and Propagation Inconformity Characteristics of Vibration Events in a Heading Face ofa Coal Mine," IJERPH, MDPI, vol. 19(22), pages 1-12, November.
    4. Hanna Michalak & Paweł Przybysz, 2021. "The Use of 3D Numerical Modeling in Conceptual Design: A Case Study," Energies, MDPI, vol. 14(16), pages 1-21, August.
    5. Chun Yang & Keping Zhou & Zhichao Li & Xin Xiong & Yun Lin & Zengwu Luo, 2020. "Numerical Modeling on the Fracturing and Energy Evolution of Large Deep Underground Openings Subjected to Dynamic Disturbance," Energies, MDPI, vol. 13(22), pages 1-18, November.
    6. Guangliang Feng & Manqing Lin & Yang Yu & Yu Fu, 2020. "A Microseismicity-Based Method of Rockburst Intensity Warning in Deep Tunnels in the Initial Period of Microseismic Monitoring," Energies, MDPI, vol. 13(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7940-:d:953296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.