IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4513-d291484.html
   My bibliography  Save this article

Study on the Evolution Law of Overburden Breaking Angle under Repeated Mining and the Application of Roof Pressure Relief

Author

Listed:
  • Feng Cui

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazard Prevention of China Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Coal Resource Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710021, China)

  • Tinghui Zhang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazard Prevention of China Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Xingping Lai

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazard Prevention of China Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Jiantao Cao

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazard Prevention of China Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Pengfei Shan

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazard Prevention of China Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

Aiming at the serious problems caused by coal mine mining activities causing the rock burst accidents, this paper is based on rock mechanics and material mechanics to establish the key layer breaking by the double-key layer beam breaking structural mechanics model of a single working face and double working face under repeated mining. The theoretical calculation formula of the angle was used as the theoretical basis for the elevation angle of the pre-reloading hole of the hard roof. The rationality and reliability of the formula were verified by the physical similarity simulation experiment and the 3 Dimension Distinct Element Code numerical simulation experiment, revealing the rock formation under the influence of repeated mining. The results show that the derived key layer breaking angle formula is suitable for the theoretical calculation of the breaking angle of the key layer of a single coal seam when the repeated disturbance coefficient is λ = 1; when it is λ = 2, it is suitable for the repeated mining of the short-distance double-coal mining. The rationality and reliability of the theoretical formula of the breaking angle of the double key layer of single coal seam and double coal seam were verified by the physical similarity simulation experiment. Through the 3DEC numerical simulation results and theoretical calculation results, the W1123 working face hard top pre-cracking pressure relief drilling elevation angle was 78°. The drilling peeping method was used to verify the results. The results show that the theoretical formula of the critical layer breaking angle is well applied in engineering practice.

Suggested Citation

  • Feng Cui & Tinghui Zhang & Xingping Lai & Jiantao Cao & Pengfei Shan, 2019. "Study on the Evolution Law of Overburden Breaking Angle under Repeated Mining and the Application of Roof Pressure Relief," Energies, MDPI, vol. 12(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4513-:d:291484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Kong & Lishuai Jiang & Jinquan Jiang & Yongning Wu & Lianjun Chen & Jianguo Ning, 2019. "Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads," Energies, MDPI, vol. 12(19), pages 1-19, September.
    2. Qingxiang Huang & Yanpeng He & Jian Cao, 2019. "Experimental Investigation on Crack Development Characteristics in Shallow Coal Seam Mining in China," Energies, MDPI, vol. 12(7), pages 1-16, April.
    3. Peng Kong & Lishuai Jiang & Jiaming Shu & Lu Wang, 2019. "Mining Stress Distribution and Fault-Slip Behavior: A Case Study of Fault-Influenced Longwall Coal Mining," Energies, MDPI, vol. 12(13), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Yang & Keping Zhou & Zhichao Li & Xin Xiong & Yun Lin & Zengwu Luo, 2020. "Numerical Modeling on the Fracturing and Energy Evolution of Large Deep Underground Openings Subjected to Dynamic Disturbance," Energies, MDPI, vol. 13(22), pages 1-18, November.
    2. Malte Scharf & Ludger Heide & Alexander Grahle & Anne Magdalene Syré & Dietmar Göhlich, 2020. "Environmental Impact of Subsidy Concepts for Stimulating Car Sales in Germany," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Xuewei Liu & Quansheng Liu & Bin Liu & Yongshui Kang, 2020. "A Modified Bursting Energy Index for Evaluating Coal Burst Proneness and Its Application in Ordos Coalfield, China," Energies, MDPI, vol. 13(7), pages 1-19, April.
    4. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    5. Feng Cui & Yanbin Yang & Xingping Lai & Chong Jia & Pengfei Shan, 2019. "Experimental Study on the Effect of Advancing Speed and Stoping Time on the Energy Release of Overburden in an Upward Mining Coal Working Face with a Hard Roof," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    6. Feng Cui & Chong Jia & Xingping Lai & Yanbing Yang & Shuai Dong, 2020. "Study on the Law of Fracture Evolution under Repeated Mining of Close-Distance Coal Seams," Energies, MDPI, vol. 13(22), pages 1-20, November.
    7. Feng Cui & Shuai Dong & Xingping Lai & Jianqiang Chen & Chong Jia & Tinghui Zhang, 2020. "Study on the Fracture Law of Inclined Hard Roof and Surrounding Rock Control of Mining Roadway in Longwall Mining Face," Energies, MDPI, vol. 13(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoping Shao & Xin Li & Long Wang & Zhiyu Fang & Bingchao Zhao & Ershuai Liu & Yeqing Tao & Lang Liu, 2020. "Study on the Pressure-Bearing Law of Backfilling Material Based on Three-Stage Strip Backfilling Mining," Energies, MDPI, vol. 13(1), pages 1-16, January.
    2. Qingxiang Huang & Yanpeng He, 2019. "Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock," Energies, MDPI, vol. 12(21), pages 1-22, November.
    3. Qingxiang Huang & Yanpeng He & Feng Li, 2020. "Research on the Roof Advanced Breaking Position and Influences of Large Mining Height Working Face in Shallow Coal Seam," Energies, MDPI, vol. 13(7), pages 1-15, April.
    4. Haiping Zhang & Siqi Li & Zhuo Chen & Yeshuang Tong & Zhuolun Li & Siqi Wang, 2022. "Fracture Mechanism of Crack-Containing Strata under Combined Static and Harmonic Dynamic Loads Based on Extended Finite Elements," Energies, MDPI, vol. 15(21), pages 1-14, October.
    5. Jianju Ren & Wenlong Zhang & Hongmei Zhang & Honggang Kou, 2022. "Occurrence Location and Propagation Inconformity Characteristics of Vibration Events in a Heading Face ofa Coal Mine," IJERPH, MDPI, vol. 19(22), pages 1-12, November.
    6. Hanna Michalak & Paweł Przybysz, 2021. "The Use of 3D Numerical Modeling in Conceptual Design: A Case Study," Energies, MDPI, vol. 14(16), pages 1-21, August.
    7. Lintian Miao & Zhonghui Duan & Yucheng Xia & Rongjun Du & Tingting Lv & Xueyang Sun, 2022. "Analysis of Factors Influencing Mining Damage Based on Engineering Detection and Machine Learning," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    8. Feng Cui & Chong Jia & Xingping Lai, 2019. "Study on Deformation and Energy Release Characteristics of Overlying Strata under Different Mining Sequence in Close Coal Seam Group Based on Similar Material Simulation," Energies, MDPI, vol. 12(23), pages 1-30, November.
    9. Chun Yang & Keping Zhou & Zhichao Li & Xin Xiong & Yun Lin & Zengwu Luo, 2020. "Numerical Modeling on the Fracturing and Energy Evolution of Large Deep Underground Openings Subjected to Dynamic Disturbance," Energies, MDPI, vol. 13(22), pages 1-18, November.
    10. Xueyi Yu & Chi Mu & Dongdong Zhang, 2020. "Assessment of Land Reclamation Benefits in Mining Areas Using Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    11. Peng Kong & Lishuai Jiang & Jinquan Jiang & Yongning Wu & Lianjun Chen & Jianguo Ning, 2019. "Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads," Energies, MDPI, vol. 12(19), pages 1-19, September.
    12. Xiuchang Shi & Jixing Zhang, 2021. "Characteristics of Overburden Failure and Fracture Evolution in Shallow Buried Working Face with Large Mining Height," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    13. Guangliang Feng & Manqing Lin & Yang Yu & Yu Fu, 2020. "A Microseismicity-Based Method of Rockburst Intensity Warning in Deep Tunnels in the Initial Period of Microseismic Monitoring," Energies, MDPI, vol. 13(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4513-:d:291484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.