IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7872-d951412.html
   My bibliography  Save this article

Drilling in Complex Pore Pressure Regimes: Analysis of Wellbore Stability Applying the Depth of Failure Approach

Author

Listed:
  • Ahmed E. Radwan

    (Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland)

Abstract

Most old oil and gas fields worldwide are depleted, making drilling in these sedimentary zones extremely difficult, especially in complex pore pressure regimes when they are accompanied by over-pressure zones. Considering that typical wellbore stability studies provide a conservative mud density curve to prevent wellbore failure, dynamic geomechanical approaches are required to provide more flexible and manageable drilling in such complex cases in order to address anticipated drilling obstacles. This study aims to apply the more dynamic concept, known as “depth of damage” (DOD), in the El Morgan oil field, Gulf of Suez Basin, to deliver a more optional mud density window that helps in the safe drilling of different pore pressure regimes within the area, as well as the implications of applying this drilling strategy in the studied basin. In this paper, well logging and downhole measurements were used to develop a 1D geomechanical earth model and infer the in situ stresses in the studied boreholes, and the modified Lade failure criterion was used to conduct the wellbore stability analysis. The study revealed that the El Morgan sedimentary succession has a complex and varied pore pressure regime. Applying the DOD approach introduces multiple mud density scenarios that can lead to successful drilling and avoid unexpected incidents while drilling. The key benefit of the DOD approach is that it widens the safe mud density window to be less than the shear failure with an acceptable amount of failure. This study provides insights into unconventional techniques such as underbalanced drilling techniques that can be used under manageable conditions in mature basins. Furthermore, the DOD approach is compared to the conventional wellbore stability analysis or breakout depth approach, and the main differences, merits, and demerits of each were discussed in this study.

Suggested Citation

  • Ahmed E. Radwan, 2022. "Drilling in Complex Pore Pressure Regimes: Analysis of Wellbore Stability Applying the Depth of Failure Approach," Energies, MDPI, vol. 15(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7872-:d:951412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7872/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonghai Gao & Xin Yu & Yufa Su & Zhiming Yin & Xuerui Wang & Shaoqiang Li, 2023. "Intelligent Identification Method for Drilling Conditions Based on Stacking Model Fusion," Energies, MDPI, vol. 16(2), pages 1-12, January.
    2. Rafik Baouche & Souvik Sen & Ahmed E. Radwan & Ahmed Abd El Aal, 2023. "In Situ Stress Determination Based on Acoustic Image Logs and Borehole Measurements in the In-Adaoui and Bourarhat Hydrocarbon Fields, Eastern Algeria," Energies, MDPI, vol. 16(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7872-:d:951412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.