IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7714-d946682.html
   My bibliography  Save this article

Community Energy Markets with Battery Energy Storage Systems: A General Modeling with Applications

Author

Listed:
  • Wanessa Guedes

    (Electrical Energy Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil)

  • Lucas Deotti

    (Electrical Energy Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil)

  • Bruno Dias

    (Electrical Energy Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil)

  • Tiago Soares

    (Center for Power and Energy Systems, Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal)

  • Leonardo Willer de Oliveira

    (Electrical Energy Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil)

Abstract

Traditional models of power systems are undergoing a restructuring process, stimulated by the growing deployment of renewable energy sources, making them more decentralized and progressively increasing the focus on the consumer. New arrangements are being explored, allowing consumers to play a more active role in energy systems, highlighting the concept of consumer-centric markets. This work presents an optimization model that considers the insertion of the battery energy storage system (BESS) in the concept of community energy markets. This model aims to increase the community income and includes the degradation of BESS, also evaluating different arrangements of BESS in the community markets. In the investigated scenarios, discussions about the feasibility of inserting BESS through the analysis of social welfare (SW) and fairness indicators were carried out. With the results, it was possible to observe that there are structures that are more advantageous from the perspective of the communities and others from the perspective of the members of the communities, bringing some insights into the different impacts of a BESS in an energy community.

Suggested Citation

  • Wanessa Guedes & Lucas Deotti & Bruno Dias & Tiago Soares & Leonardo Willer de Oliveira, 2022. "Community Energy Markets with Battery Energy Storage Systems: A General Modeling with Applications," Energies, MDPI, vol. 15(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7714-:d:946682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khorasany, Mohsen & Razzaghi, Reza & Shokri Gazafroudi, Amin, 2021. "Two-stage mechanism design for energy trading of strategic agents in energy communities," Applied Energy, Elsevier, vol. 295(C).
    2. Christian Von Hirschhausen, 2017. "Prosumage and the future regulation of utilities: An introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    4. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    5. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    6. Cornélusse, Bertrand & Savelli, Iacopo & Paoletti, Simone & Giannitrapani, Antonio & Vicino, Antonio, 2019. "A community microgrid architecture with an internal local market," Applied Energy, Elsevier, vol. 242(C), pages 547-560.
    7. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    8. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    9. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    10. Inês F. G. Reis & Ivo Gonçalves & Marta A. R. Lopes & Carlos Henggeler Antunes, 2021. "Assessing the Influence of Different Goals in Energy Communities’ Self-Sufficiency—An Optimized Multiagent Approach," Energies, MDPI, vol. 14(4), pages 1-32, February.
    11. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    12. Bertrand Corn'elusse & Iacopo Savelli & Simone Paoletti & Antonio Giannitrapani & Antonio Vicino, 2018. "A Community Microgrid Architecture with an Internal Local Market," Papers 1810.09803, arXiv.org, revised Feb 2019.
    13. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    14. Nousdilis, Angelos I. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2018. "Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption," Applied Energy, Elsevier, vol. 229(C), pages 614-624.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Ostrowska & Tomasz Sikorski & Alessandro Burgio & Michał Jasiński, 2023. "Modern Use of Prosumer Energy Regulation Capabilities for the Provision of Microgrid Flexibility Services," Energies, MDPI, vol. 16(1), pages 1-13, January.
    2. Shoaib Ahmed & Amjad Ali & Alessandro Ciocia & Antonio D’Angola, 2024. "Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview," Energies, MDPI, vol. 17(13), pages 1-40, June.
    3. Carlos Oliveira & Micael Simões & Leonardo Bitencourt & Tiago Soares & Manuel A. Matos, 2023. "Distributed Network-Constrained P2P Community-Based Market for Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).
    2. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    3. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    4. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    5. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    6. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    7. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    8. Carlos Oliveira & Micael Simões & Leonardo Bitencourt & Tiago Soares & Manuel A. Matos, 2023. "Distributed Network-Constrained P2P Community-Based Market for Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-16, February.
    9. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    10. Rogério Rocha & Ricardo Silva & João Mello & Sérgio Faria & Fábio Retorta & Clara Gouveia & José Villar, 2023. "A Three-Stage Model to Manage Energy Communities, Share Benefits and Provide Local Grid Services," Energies, MDPI, vol. 16(3), pages 1-24, January.
    11. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    12. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    13. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    14. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    15. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    16. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    17. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    18. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    20. Xiong, Linyun & Li, Penghan & Wang, Ziqiang & Wang, Jie, 2020. "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7714-:d:946682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.