IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7571-d941681.html
   My bibliography  Save this article

Screening of Nickel and Platinum Catalysts for Glycerol Conversion to Gas Products in Hydrothermal Media

Author

Listed:
  • Carine T. Alves

    (Energy and Bioproducts Research Institute, School of Infrastructure and Sustainable Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
    Energy Engineering Department, Universidade Federal do Reconcavo da Bahia, Av. Centenario 697, Feira de Santana 44085-132, Brazil)

  • Jude A. Onwudili

    (Energy and Bioproducts Research Institute, School of Infrastructure and Sustainable Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK)

Abstract

The production of low-carbon gaseous fuels from biomass has the potential to reduce greenhouse gas emissions and promote energy sustainability, stability and affordability around the world. Glycerol, a large-volume by-product of biodiesel production, is a potential feedstock for the production of low-carbon energy vectors. In this present work, an aqueous solution of pure glycerol was reacted under hydrothermal conditions using a total of 10 types of heterogeneous catalysts to evaluate its conversion to gas products (hydrogen, methane, CO, CO 2 and C 2 –C 4 hydrocarbon gases). Two bimetallic Ni-Fe and Ni-Cu catalysts, three Pt-based catalysts and physical mixtures of the five catalysts were tested. The reactions were carried out in a batch reactor for 1 h reaction time, using a 9:1 mass ratio of water/glycerol (10 wt%) and the reaction temperatures ranged between 250–350 °C using and without using 1 g of catalyst. The effects of the catalysts and reaction conditions on the conversion of glycerol in terms of carbon and hydrogen gasification efficiencies, selectivity and yields of components in the gas products were investigated. CO 2 remained the most dominant gas product in all experiments. The results indicated that increasing the reaction temperature favoured gas formation and both carbon and hydrogen gasification efficiencies. The combination of Ni-Cu and Pt/C catalysts was the most selective catalyst for gas formation at 350 °C, giving carbon gasification efficiency of 95.6 wt%. Individually, the catalyst with the highest hydrogen production was Pt/C and the highest propane yield was obtained with the Ni-Cu bimetallic catalyst. Some catalysts showed good structural stability in hydrothermal media but need improvements towards better yields of desired fuel gases.

Suggested Citation

  • Carine T. Alves & Jude A. Onwudili, 2022. "Screening of Nickel and Platinum Catalysts for Glycerol Conversion to Gas Products in Hydrothermal Media," Energies, MDPI, vol. 15(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7571-:d:941681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    2. A. P. Ballantyne & C. B. Alden & J. B. Miller & P. P. Tans & J. W. C. White, 2012. "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years," Nature, Nature, vol. 488(7409), pages 70-72, August.
    3. Iram Razaq & Keith E. Simons & Jude A. Onwudili, 2021. "Parametric Study of Pt/C-Catalysed Hydrothermal Decarboxylation of Butyric Acid as a Potential Route for Biopropane Production," Energies, MDPI, vol. 14(11), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    2. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Onwudili, Jude A. & Nouwe Edou, Danielle J., 2022. "Process modelling and economic evaluation of biopropane production from aqueous butyric acid feedstock," Renewable Energy, Elsevier, vol. 184(C), pages 80-90.
    4. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    5. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Rebecca Peters & Jürgen Berlekamp & Ana Lucía & Vittoria Stefani & Klement Tockner & Christiane Zarfl, 2021. "Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece, Albania)," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    9. Yong, Hui & Wei, Xin & Hu, Jifan & Yuan, Zeming & Wu, Ming & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy," Renewable Energy, Elsevier, vol. 162(C), pages 2153-2165.
    10. Liu, Jingjing & Cheng, Honghui & Han, Shumin & Liu, Hongfei & Huot, Jacques, 2020. "Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure," Energy, Elsevier, vol. 192(C).
    11. Srinet, Ritika & Nandy, Subrata & Patel, N.R. & Padalia, Hitendra & Watham, Taibanganba & Singh, Sanjeev K. & Chauhan, Prakash, 2023. "Simulation of forest carbon fluxes by integrating remote sensing data into biome-BGC model," Ecological Modelling, Elsevier, vol. 475(C).
    12. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    13. Kalyan Annamalai, 2024. "Breathing Planet Earth: Analysis of Keeling’s Data on CO 2 and O 2 with Respiratory Quotient (RQ), Part I: Global Respiratory Quotient (RQ Glob ) of Earth," Energies, MDPI, vol. 17(2), pages 1-35, January.
    14. Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2024. "A regression-based approach to the CO2 airborne fraction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Tomohiro Oda & Rostyslav Bun & Vitaliy Kinakh & Petro Topylko & Mariia Halushchak & Gregg Marland & Thomas Lauvaux & Matthias Jonas & Shamil Maksyutov & Zbigniew Nahorski & Myroslava Lesiv & Olha Dany, 2019. "Errors and uncertainties in a gridded carbon dioxide emissions inventory," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1007-1050, August.
    16. A. Rashedi & Taslima Khanam & Mirjam Jonkman, 2020. "On Reduced Consumption of Fossil Fuels in 2020 and Its Consequences in Global Environment and Exergy Demand," Energies, MDPI, vol. 13(22), pages 1-14, November.
    17. Zhongyi Sun & Xiufeng Wang & Haruhiko Yamamoto & Hiroshi Tani & Tangzhe Nie, 2020. "The effects of spatiotemporal patterns of atmospheric CO2 concentration on terrestrial gross primary productivity estimation," Climatic Change, Springer, vol. 163(2), pages 913-930, November.
    18. Ádám Révész & Marcell Gajdics, 2021. "High-Pressure Torsion of Non-Equilibrium Hydrogen Storage Materials: A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
    19. Zhujun Zhao & Qing He & Zhongqi Lu & Quanwei Zhao & Jianlin Wang, 2022. "Analysis of Atmospheric CO 2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China," IJERPH, MDPI, vol. 19(11), pages 1-14, June.
    20. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2020. "Significantly decreased stability of MgH2 in the Mg-In-C alloy system: Long-period-stacking-ordering as a new way how to improve performance of hydrogen storage alloys?," Renewable Energy, Elsevier, vol. 150(C), pages 204-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7571-:d:941681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.