IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p352-d717655.html
   My bibliography  Save this article

Open-Circuit Fault-Tolerant Strategy for Interleaved Boost Converters via Filippov Method

Author

Listed:
  • Cristina Morel

    (Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile, ESTACA’Lab Paris-Saclay, 12 Avenue Paul Delouvrier, RD10, Montigny-le-Bretonneux, 78180 Paris, France)

  • Ahmad Akrad

    (Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile, ESTACA’Lab Paris-Saclay, 12 Avenue Paul Delouvrier, RD10, Montigny-le-Bretonneux, 78180 Paris, France)

  • Rabia Sehab

    (Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile, ESTACA’Lab Paris-Saclay, 12 Avenue Paul Delouvrier, RD10, Montigny-le-Bretonneux, 78180 Paris, France)

  • Toufik Azib

    (Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile, ESTACA’Lab Paris-Saclay, 12 Avenue Paul Delouvrier, RD10, Montigny-le-Bretonneux, 78180 Paris, France)

  • Cherif Larouci

    (Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile, ESTACA’Lab Paris-Saclay, 12 Avenue Paul Delouvrier, RD10, Montigny-le-Bretonneux, 78180 Paris, France)

Abstract

Interleaved converters use an increased number of power electronics switches; this may subsequently affect their reliability. However, this is an opportunity to develop fault-tolerant strategies to improve their reliability and to ensure continuity of service. This is why we herein propose, for the first time, a mathematical function to simultaneously model the healthy and faulty conditions of each switch, thus enabling a unique model of the system. This model is then used in an original fault-tolerant strategy based upon the peak current control with slope compensation. This method not only extends the stable range of the load variation but also ensures the stability in faulty conditions. Finally, the simulation results validate its effectiveness and confirm the theoretical analysis.

Suggested Citation

  • Cristina Morel & Ahmad Akrad & Rabia Sehab & Toufik Azib & Cherif Larouci, 2022. "Open-Circuit Fault-Tolerant Strategy for Interleaved Boost Converters via Filippov Method," Energies, MDPI, vol. 15(1), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:352-:d:717655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Morel & Ahmad Akrad, 2023. "Open-Circuit Fault Detection and Location in AC - DC - AC Converters Based on Entropy Analysis," Energies, MDPI, vol. 16(4), pages 1-20, February.
    2. Fadi Alyoussef & Ahmad Akrad & Rabia Sehab & Cristina Morel & Ibrahim Kaya, 2022. "Velocity Sensor Fault-Tolerant Controller for Induction Machine Using Intelligent Voting Algorithm," Energies, MDPI, vol. 15(9), pages 1-18, April.
    3. Chenyun Wu & Rabia Sehab & Ahmad Akrad & Cristina Morel, 2022. "Fault Diagnosis Methods and Fault Tolerant Control Strategies for the Electric Vehicle Powertrains," Energies, MDPI, vol. 15(13), pages 1-7, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Cipriani & Antonino D’Amico & Stefania Guarino & Donatella Manno & Marzia Traverso & Vincenzo Di Dio, 2020. "Convolutional Neural Network for Dust and Hotspot Classification in PV Modules," Energies, MDPI, vol. 13(23), pages 1-17, December.
    2. Gomathy Balasubramani & Venkatesan Thangavelu & Muniraj Chinnusamy & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2020. "Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation," Energies, MDPI, vol. 13(6), pages 1-14, March.
    3. Christopher Gradwohl & Vesna Dimitrievska & Federico Pittino & Wolfgang Muehleisen & András Montvay & Franz Langmayr & Thomas Kienberger, 2021. "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic," Energies, MDPI, vol. 14(5), pages 1-23, February.
    4. Fouzi Harrou & Bilal Taghezouit & Sofiane Khadraoui & Abdelkader Dairi & Ying Sun & Amar Hadj Arab, 2022. "Ensemble Learning Techniques-Based Monitoring Charts for Fault Detection in Photovoltaic Systems," Energies, MDPI, vol. 15(18), pages 1-28, September.
    5. Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2020. "Passive Fault-Tolerant Control Strategies for Power Converter in a Hybrid Microgrid," Energies, MDPI, vol. 13(21), pages 1-28, October.
    6. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
    7. Tarek Berghout & Mohamed Benbouzid & Toufik Bentrcia & Xiandong Ma & Siniša Djurović & Leïla-Hayet Mouss, 2021. "Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects," Energies, MDPI, vol. 14(19), pages 1-24, October.
    8. Ahmad Rivai & Nasrudin Abd Rahim & Mohamad Fathi Mohamad Elias & Jafferi Jamaludin, 2019. "Analysis of Photovoltaic String Failure and Health Monitoring with Module Fault Identification," Energies, MDPI, vol. 13(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:352-:d:717655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.