IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7425-d937794.html
   My bibliography  Save this article

Νarrow Row Spacing and Cover Crops to Suppress Weeds and Improve Sulla ( Hedysarum coronarium L.) Biomass Production

Author

Listed:
  • Ioannis Gazoulis

    (Laboratory of Agronomy, Agricultural University of Athens, 75, Iera Odos Str., 11855 Athens, Greece)

  • Panagiotis Kanatas

    (Department of Crop Science, University of Patras, 30200 Mesolonghi, Greece)

  • Nikolaos Antonopoulos

    (Laboratory of Agronomy, Agricultural University of Athens, 75, Iera Odos Str., 11855 Athens, Greece)

  • Alexandros Tataridas

    (Laboratory of Agronomy, Agricultural University of Athens, 75, Iera Odos Str., 11855 Athens, Greece)

  • Ilias Travlos

    (Laboratory of Agronomy, Agricultural University of Athens, 75, Iera Odos Str., 11855 Athens, Greece)

Abstract

Sulla ( Hedysarum coronarium L.) is a new candidate crop for biofuel production. A field trial was conducted in 2018–2020 in Pyrgos, Greece, and repeated in 2019–2021 to evaluate different row spacings and cover crops for weed management in sulla in a two-factor randomized complete block design (RCBD) with four replications. Four row spacings, namely 76-cm, 51-cm, 38-cm, and 19-cm, were assigned to the main plots. Three cover crops, namely farro wheat ( Triticum turgidum subsp. dicoccum (Schrank ex Schübler) Thell.), common vetch ( Vicia sativa L.), white mustard ( Sinapis alba L.), and an untreated control, were assigned to the subplots. In the first year of sulla growth, weed biomass, sulla stem, and total dry matter yield (DMY) were affected by growing cycles ( p -value ≤ 0.05). The 19- and 38-cm row spacings resulted in the lowest weed biomass and the highest stem and total sulla DMY in the first year of sulla growth. White mustard was the most weed-suppressive cover crop in both years and growing cycles followed by farro heat. The highest stem DMY was observed in subplots with white mustard in both years. The combination of 38 cm row spacing and white mustard as a cover crop resulted in the highest cumulative two-year sulla DMY (18.9 t ha −1 ). Further case studies are needed to evaluate more cultural practices for weed management in sulla and other major biomass crops under different soil and climatic conditions.

Suggested Citation

  • Ioannis Gazoulis & Panagiotis Kanatas & Nikolaos Antonopoulos & Alexandros Tataridas & Ilias Travlos, 2022. "Νarrow Row Spacing and Cover Crops to Suppress Weeds and Improve Sulla ( Hedysarum coronarium L.) Biomass Production," Energies, MDPI, vol. 15(19), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7425-:d:937794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannis Gazoulis & Panagiotis Kanatas & Panayiota Papastylianou & Alexandros Tataridas & Efthymia Alexopoulou & Ilias Travlos, 2021. "Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops," Energies, MDPI, vol. 14(9), pages 1-16, April.
    2. Pappalardo, G. & Selvaggi, R. & Pecorino, B., 2022. "Biomethane production potential in Southern Italy: An empirical approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Gourav Sharma & Swati Shrestha & Sudip Kunwar & Te-Ming Tseng, 2021. "Crop Diversification for Improved Weed Management: A Review," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cezary A. Kwiatkowski & Małgorzata Pawłowska & Elżbieta Harasim & Lucjan Pawłowski, 2023. "Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review," Energies, MDPI, vol. 16(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    2. Theodrose Sisay & Kindie Tesfaye & Mengistu Ketema & Nigussie Dechassa & Mezegebu Getnet, 2023. "Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    3. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    4. Kumari, V. Visha & Balloli, S.S. & Ramana, D.B.V. & Kumar, Manoranjan & Maruthi, V. & Prabhakar, M. & Osman, M. & Indoria, A.K. & Manjunath, M. & Chary, G. Ravindra & Gopinath, K.A. & Venkatesh, G. & , 2023. "Crop and livestock productivity, soil health improvement and insect dynamics: Impact of different fodder-based cropping systems in a rainfed region of India," Agricultural Systems, Elsevier, vol. 208(C).
    5. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    6. Catalano, Giovanni & D'Adamo, Idiano & Gastaldi, Massimo & Nizami, Abdul-Sattar & Ribichini, Marco, 2024. "Incentive policies in biomethane production toward circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Aušra Marcinkevičienė & Arūnas Čmukas & Rimantas Velička & Robertas Kosteckas & Lina Skinulienė, 2023. "Comparative Analysis of Undersown Cover Crops and Bio-Preparations on Weed Spread and Organically Grown Spring Oilseed Rape Yield," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    8. Colette de Villiers & Cilence Munghemezulu & Zinhle Mashaba-Munghemezulu & George J. Chirima & Solomon G. Tesfamichael, 2023. "Weed Detection in Rainfed Maize Crops Using UAV and PlanetScope Imagery," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    9. Kun Wang & Yinli Bi & Jiayu Zhang & Shaopeng Ma, 2022. "AMF Inoculum Enhances Crop Yields of Zea mays L. ‘Chenghai No. 618’ and Glycine max L. ‘Zhonghuang No. 17’ without Disturbing Native Fugal Communities in Coal Mine Dump," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    10. Pervin Akter & Arju Farhana & A.M. Abu Ahmed, 2022. "Allelopathic Response Of Root Exudates Of Five Common Weeds In Yard Long Bean (Vigna Unguiculata Subsp. Sesquipedalis L. Verd] And Maize (Zea Mays L.)," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 6(1), pages 01-05, January.
    11. Christina-Ioanna Papadopoulou & Fotios Chatzitheodoridis & Efstratios Loizou & Piotr Jurga, 2024. "Operational taxonomy of farmers' towards circular bioeconomy in regional level," Operational Research, Springer, vol. 24(2), pages 1-27, June.
    12. Silvio Franco & Barbara Pancino & Angelo Martella & Tommaso De Gregorio, 2022. "Assessing the Presence of a Monoculture: From Definition to Quantification," Agriculture, MDPI, vol. 12(9), pages 1-10, September.
    13. Sabine Andert & Andrea Ziesemer, 2022. "Analysing Farmers’ Herbicide Use Pattern to Estimate the Magnitude and Field-Economic Value of Crop Diversification," Agriculture, MDPI, vol. 12(5), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7425-:d:937794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.