IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7285-d933150.html
   My bibliography  Save this article

Effect on Diesel Engine Performance Parameters Using Hydrogen and Oxygen Produced on Demand

Author

Listed:
  • Robson do Carmelo Santos Barreiros

    (Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil)

  • Elias Amancio Siqueira-Filho

    (Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil)

  • Alesson Itallo Ribeiro Dias Silva

    (Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil)

  • Flávio Wilson Barreiros De Oliveira

    (Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil)

  • Priscilla Bernardo Mendonça Barreiros

    (Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil)

  • Mirna Dimenstein

    (Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil)

  • Leonie Asfora Sarubbo

    (Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil)

  • Rosa Lúcia Martins dos Santos

    (Energética SUAPE II S.A, Rodovia PE-60, Km 10, 8100 Complexo Portuário de SUAPE, Cabo de Santo Agostinho 54510-350, Brazil)

  • Vanias De Araújo Júnior

    (Energética SUAPE II S.A, Rodovia PE-60, Km 10, 8100 Complexo Portuário de SUAPE, Cabo de Santo Agostinho 54510-350, Brazil)

Abstract

Hydrogen is seen as a future energy carrier since its chemical compounds make up a large part of the Earth’s surface. This study sought to analyze the impact related to the inclusion of hydrogen and oxygen gases produced on demand by an alkaline electrolyzer to the engine added directly through the fuel intake line. For this purpose, performance parameters were monitored, such as liquid fuel consumption and greenhouse gas emissions, and correlated to any effect observed on the engine’s power output and combustion behavior. A 58 kVA nominal power motor-generator was used, coupled with a resistive load bank (20 kW), where two fuel configurations were tested (diesel injection only and a mixture of diesel, hydrogen and oxygen) and compared. A total of 42 tests were performed considering both the admission gases into the fuel intake line and also diesel supply only for baseline. A substantial decrease in fuel consumption was observed (7.59%) when the blend configuration was used despite a decrease in the engine’s work (1.07%). It was also possible to see a common pattern between NO and NO 2 emissions for both fuel configurations, while the behavior of the CO 2 and CO emissions indicated a higher complete diesel burning fraction when using the gases on demand. Therefore, we can verify that the use of hydrogen and oxygen gases produced on demand in the fuel intake line is a promising alternative to provide a decrease in liquid fuel consumption and an overall improvement in engine combustion.

Suggested Citation

  • Robson do Carmelo Santos Barreiros & Elias Amancio Siqueira-Filho & Alesson Itallo Ribeiro Dias Silva & Flávio Wilson Barreiros De Oliveira & Priscilla Bernardo Mendonça Barreiros & Mirna Dimenstein &, 2022. "Effect on Diesel Engine Performance Parameters Using Hydrogen and Oxygen Produced on Demand," Energies, MDPI, vol. 15(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7285-:d:933150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles Bronzo Barbosa Farias & Robson Carmelo Santos Barreiros & Milena Fernandes da Silva & Alessandro Alberto Casazza & Attilio Converti & Leonie Asfora Sarubbo, 2022. "Use of Hydrogen as Fuel: A Trend of the 21st Century," Energies, MDPI, vol. 15(1), pages 1-20, January.
    2. Luo, Jianbin & Liu, Zhonghang & Wang, Jie & Xu, Hongxiang & Tie, Yuanhao & Yang, Dayong & Zhang, Zhiqing & Zhang, Chengtao & Wang, Haijiao, 2022. "Investigation of hydrogen addition on the combustion, performance, and emission characteristics of a heavy-duty engine fueled with diesel/natural gas," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).
    3. Paparao, Jami & Soundarya, N. & Murugan, S., 2023. "Advancing green technology: Experimental study on low heat rejection engine utilizing bio-based antioxidant-doped biodiesel-diesel blends and oxy-hydrogen gas," Energy, Elsevier, vol. 283(C).
    4. Kasin Ransikarbum & Wattana Chanthakhot & Tony Glimm & Jettarat Janmontree, 2023. "Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool," Resources, MDPI, vol. 12(4), pages 1-22, April.
    5. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    6. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2023. "Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems," Energy, Elsevier, vol. 270(C).
    7. Liu, Qianqian & Sun, Jingyun & Li, Shuanglong & Zhang, Feng & Gu, Mingyan & Wang, Yang, 2024. "Study of soot microscopic characteristics in hydrogen/methane/ethylene co-flow diffusion flame," Energy, Elsevier, vol. 290(C).
    8. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    9. Wang, Binbin & Wang, Hechun & Hu, Deng & Yang, Chuanlei & Duan, Baoyin & Wang, Yinyan, 2023. "Study on the performance of premixed natural gas/ammonia engine with diesel ignition," Energy, Elsevier, vol. 271(C).
    10. Liu, Chang & Dang, Zheng & Xi, Guang, 2024. "Numerical study on thermal stress of solid oxide electrolyzer cell with various flow configurations," Applied Energy, Elsevier, vol. 353(PA).
    11. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    12. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    14. Swapnali Walake & Yogesh Jadhav & Atul Kulkarni, 2023. "Novel Spinel Nanomaterials for Photocatalytic Hydrogen Evolution Reactions: An Overview," Energies, MDPI, vol. 16(12), pages 1-13, June.
    15. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).
    16. Tan, Yan & Kou, Chuanfu & E, Jiaqiang & Feng, Changlin & Han, Dandan, 2024. "Effect of different exhaust parameters on conversion efficiency enhancement of a Pd–Rh three-way catalytic converter for heavy-duty natural gas engines," Energy, Elsevier, vol. 292(C).
    17. Baraiya, Nikhil A. & Ramanan, Vikram & Nagarajan, Baladandayuthapani & Vegad, Chetankumar S. & Chakravarthy, S.R., 2023. "Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor," Energy, Elsevier, vol. 263(PD).
    18. Liu, Yongfeng & Zhang, Wenxuan & Zhang, Xin & Yang, Limei & Huang, Zhenguo & Fang, Fang & Sun, Wenping & Gao, Mingxia & Pan, Hongge, 2023. "Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Hassan Sadah Muhssen & Máté Zöldy & Ákos Bereczky, 2024. "A Comprehensive Review on the Hydrogen–Natural Gas–Diesel Tri-Fuel Engine Exhaust Emissions," Energies, MDPI, vol. 17(15), pages 1-32, August.
    20. Wang, Chongyao & Wang, Xin & Wang, Huaiyu & Xu, Yonghong & Ge, Yunshan & Tan, Jianwei & Hao, Lijun & Wang, Yachao & Zhang, Mengzhu & Li, Ruonan, 2024. "Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7285-:d:933150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.