IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7282-d933043.html
   My bibliography  Save this article

Toward Circular Supply Chains for Flat Glass: Challenges of Transforming to More Energy-Efficient Solutions

Author

Listed:
  • Helena Forslund

    (School of Business and Economics, Linnaeus University, SE-35195 Växjö, Sweden)

  • Maria Björklund

    (School of Business and Economics, Linnaeus University, SE-35195 Växjö, Sweden
    Department of Management and Engineering, Linköping University, SE-58331 Linköping, Sweden)

Abstract

Even if flat glass is 100% recyclable, only 1% is currently handled in circular or closed-loop supply chains (CLSCs) in Sweden. This has an unnecessary environmental impact, indicating not only the potential for more energy-efficient solutions but also the challenges that need to be understood. The purpose of this article is to increase the knowledge of challenges in applying different types of more or less energy-efficient CLSCs for flat glass. Through a literature review, an overview of CLSC types, together with challenges in different areas, is provided. The CLSC types and challenges are corroborated in a flat glass context, including focus groups and expert interviews. Four CLSC types—two CLSCs based on remanufacturing, one on reconditioning, and one on reuse—are identified. A framework provides implications for both literature and practice. It contains 19 challenges—such as lack of large-scale actors, lack of material knowledge, lack of knowledge of customers’ behavior, lack of promotion of flat glass CLSCs at many levels in society—in terms of both legislation and cost—and lack of business models—structured in four areas—material characteristics and quality, inefficient logistics systems, demand and supply, and means of control and costs. The least-applied CLSC includes almost every challenge and has a large upscaling potential, indicating the necessity of mitigating challenges. The framework identifies challenges not included in earlier flat glass literature. CLSC types are related to different challenge set-ups and different energy efficiency potentials, leading to expanded CLSC knowledge. One additional implication is that practitioners can identify potential CLSC types and understand their challenges from the perspective of several stakeholders. The participatory research methodology fills a methodological research gap within CLSC literature and provides important insights.

Suggested Citation

  • Helena Forslund & Maria Björklund, 2022. "Toward Circular Supply Chains for Flat Glass: Challenges of Transforming to More Energy-Efficient Solutions," Energies, MDPI, vol. 15(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7282-:d:933043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shimada, Tomoaki & Van Wassenhove, Luk N., 2019. "Closed-Loop supply chain activities in Japanese home appliance/personal computer manufacturers: A case study," International Journal of Production Economics, Elsevier, vol. 212(C), pages 259-265.
    2. Meiling He & Tianhe Lin & Xiaohui Wu & Jianqiang Luo & Yongtao Peng, 2020. "A Systematic Literature Review of Reverse Logistics of End-of-Life Vehicles: Bibliometric Analysis and Research Trend," Energies, MDPI, vol. 13(21), pages 1-22, October.
    3. Beatrice Marchi & Simone Zanoni, 2017. "Supply Chain Management for Improved Energy Efficiency: Review and Opportunities," Energies, MDPI, vol. 10(10), pages 1-29, October.
    4. Piera Centobelli & Roberto Cerchione & Emilio Esposito, 2018. "Environmental Sustainability and Energy-Efficient Supply Chain Management: A Review of Research Trends and Proposed Guidelines," Energies, MDPI, vol. 11(2), pages 1-36, January.
    5. V. Daniel R. Guide & Luk N. Van Wassenhove, 2009. "OR FORUM---The Evolution of Closed-Loop Supply Chain Research," Operations Research, INFORMS, vol. 57(1), pages 10-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imadeddine Oubrahim & Naoufal Sefiani & Ari Happonen, 2023. "The Influence of Digital Transformation and Supply Chain Integration on Overall Sustainable Supply Chain Performance: An Empirical Analysis from Manufacturing Companies in Morocco," Energies, MDPI, vol. 16(2), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiyun, Cui & Zhixiong, Huang & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Jessica Wehner, 2018. "Energy Efficiency in Logistics: An Interactive Approach to Capacity Utilisation," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    3. Maria Björklund & Niklas Simm, 2019. "Roles and Perspectives When Estimating Energy and Environmental Potentials of Urban Consolidation," Energies, MDPI, vol. 12(24), pages 1-17, December.
    4. Joakim Haraldsson & Maria T. Johansson, 2019. "Energy Efficiency in the Supply Chains of the Aluminium Industry: The Cases of Five Products Made in Sweden," Energies, MDPI, vol. 12(2), pages 1-25, January.
    5. Tomislav Letnik & Katja Hanžič & Giuseppe Luppino & Matej Mencinger, 2022. "Impact of Logistics Trends on Freight Transport Development in Urban Areas," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Liu, Wenjie & Liu, Wei & Shen, Ningning & Xu, Zhitao & Xie, Naiming & Chen, Jian & Zhou, Huiyu, 2022. "Pricing and collection decisions of a closed-loop supply chain with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 245(C).
    7. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    8. Matthias Kalverkamp & Alexandra Pehlken & Thorsten Wuest, 2017. "Cascade Use and the Management of Product Lifecycles," Sustainability, MDPI, vol. 9(9), pages 1-23, August.
    9. Choi, Tsan-Ming & Chow, Pui-Sze & Lee, Chang Hwan & Shen, Bin, 2018. "Used intimate apparel collection programs: A game-theoretic analytical study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 44-62.
    10. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    11. Fu, Shuke & Ge, Yingchen & Hao, Yu & Peng, Jiachao & Tian, Jiali, 2024. "Energy supply chain efficiency in the digital era: Evidence from China's listed companies," Energy Economics, Elsevier, vol. 134(C).
    12. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    13. Yanting Huang & Zongjun Wang, 2017. "Dual-Recycling Channel Decision in a Closed-Loop Supply Chain with Cost Disruptions," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    14. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    15. Rika Ampuh Hadiguna, 2012. "Decision support framework for risk assessment of sustainable supply chain," International Journal of Logistics Economics and Globalisation, Inderscience Enterprises Ltd, vol. 4(1/2), pages 35-54.
    16. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.
    17. Amer Saeed & Yun Jun & Saviour Ayertey Nubuor & Hewawasam Puwakpitiyage Rasika Priyankara & Mahabaduge Prasad Fernando Jayasuriya, 2018. "Institutional Pressures, Green Supply Chain Management Practices on Environmental and Economic Performance: A Two Theory View," Sustainability, MDPI, vol. 10(5), pages 1-24, May.
    18. Xiaomin Zhao & Xueli Bai & Zhihui Fan & Ting Liu, 2020. "Game Analysis and Coordination of a Closed-Loop Supply Chain: Perspective of Components Reuse Strategy," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    19. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    20. Maiti, T. & Giri, B.C., 2017. "Two-way product recovery in a closed-loop supply chain with variable markup under price and quality dependent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 259-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7282-:d:933043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.