IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7056-d925445.html
   My bibliography  Save this article

Modeling the Combined Effects of Cyclable Lithium Loss and Electrolyte Depletion on the Capacity and Power Fades of a Lithium-Ion Battery

Author

Listed:
  • Dongcheul Lee

    (Department of Chemical Engineering and Division of Energy Systems Research, Ajou University, Suwon 16499, Korea)

  • Byungmook Kim

    (Department of Chemical Engineering and Division of Energy Systems Research, Ajou University, Suwon 16499, Korea)

  • Chee Burm Shin

    (Department of Chemical Engineering and Division of Energy Systems Research, Ajou University, Suwon 16499, Korea)

  • Seung-Mi Oh

    (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Korea)

  • Jinju Song

    (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Korea)

  • Il-Chan Jang

    (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Korea)

  • Jung-Je Woo

    (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Korea)

Abstract

In this study, we present a modeling approach to estimate the combined effects of cyclable lithium loss and electrolyte depletion on the capacity and discharge power fades of lithium-ion batteries (LIBs). The LIB cell based on LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) was used to model the discharge behavior in the multiple degradation modes. The discharge voltages for nine different levels of cyclable lithium loss and electrolyte depletion were measured experimentally. When there was no cyclable lithium loss, the 50% of electrolyte depletion brought about 5% reduction in discharge capacity at 0.05 C discharge rate, while it resulted in 46% reduction when it was coupled with 30% of cyclable lithium loss. The 50% of electrolyte depletion with no cyclable lithium loss caused 1% reduction in discharge power during 0.5 C discharge at the state of charge (SOC) level of 0.8, while it resulted in 13% reduction when it was coupled with 30% of cyclable lithium loss. The modeling results obtained by using the one-dimensional finite element method were compared with the experimental data. The justification of the modeling methods is demonstrated by the high degree of concordance between the predicted and experimental values. Using the validated modeling methodology, the discharge capacity and usable discharge power can be estimated effectively under various combined degradation modes of cyclable lithium loss and electrolyte depletion in the LIB cell.

Suggested Citation

  • Dongcheul Lee & Byungmook Kim & Chee Burm Shin & Seung-Mi Oh & Jinju Song & Il-Chan Jang & Jung-Je Woo, 2022. "Modeling the Combined Effects of Cyclable Lithium Loss and Electrolyte Depletion on the Capacity and Power Fades of a Lithium-Ion Battery," Energies, MDPI, vol. 15(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7056-:d:925445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Fangfang & Wang, Dong & Zhao, Yang & Tsui, Kwok-Leung & Bae, Suk Joo, 2018. "A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries," Energy, Elsevier, vol. 145(C), pages 486-495.
    2. Dongcheul Lee & Boram Koo & Chee Burm Shin & So-Yeon Lee & Jinju Song & Il-Chan Jang & Jung-Je Woo, 2019. "Modeling the Effect of the Loss of Cyclable Lithium on the Performance Degradation of a Lithium-Ion Battery," Energies, MDPI, vol. 12(22), pages 1-14, November.
    3. Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
    4. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xin & Zhou, Long & Zhu, Zhiwei & Zheng, Yuejiu & Sun, Tao & Shen, Kai, 2023. "Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors," Energy, Elsevier, vol. 274(C).
    2. Tian, Yu & Lin, Cheng & Li, Hailong & Du, Jiuyu & Xiong, Rui, 2021. "Detecting undesired lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods," Applied Energy, Elsevier, vol. 300(C).
    3. Angeles Cabañero, Maria & Altmann, Johannes & Gold, Lukas & Boaretto, Nicola & Müller, Jana & Hein, Simon & Zausch, Jochen & Kallo, Josef & Latz, Arnulf, 2019. "Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries," Energy, Elsevier, vol. 171(C), pages 1217-1228.
    4. Liming Deng & Wenjing Shen & Kangkang Xu & Xuhui Zhang, 2024. "An Adaptive Modeling Method for the Prognostics of Lithium-Ion Batteries on Capacity Degradation and Regeneration," Energies, MDPI, vol. 17(7), pages 1-15, April.
    5. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    6. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    7. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    8. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    9. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    12. Jing Hou & He He & Yan Yang & Tian Gao & Yifan Zhang, 2019. "A Variational Bayesian and Huber-Based Robust Square Root Cubature Kalman Filter for Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(9), pages 1-23, May.
    13. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    14. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    15. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    16. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    17. Qi Wang & Tian Gao & Xingcan Li, 2022. "SOC Estimation of Lithium-Ion Battery Based on Equivalent Circuit Model with Variable Parameters," Energies, MDPI, vol. 15(16), pages 1-15, August.
    18. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
    19. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Chen, Jianguo & Han, Xuebing & Sun, Tao & Zheng, Yuejiu, 2024. "Analysis and prediction of battery aging modes based on transfer learning," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7056-:d:925445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.