IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6951-d922417.html
   My bibliography  Save this article

Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator

Author

Listed:
  • Hoang Vu

    (Department of Information and Communication Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea)

  • Ngoc Hai Vu

    (Faculty of Electrical and Electronics Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam)

  • Seoyong Shin

    (Department of Information and Communication Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea)

Abstract

Electric vehicles (EVs) and photovoltaics (PVs) are new technologies that will play an important role in the transportation industry over the next decade. Using solar panels on the roofs of cars is one of the simplest ways to reduce fuel costs and increase the mobility of electric vehicles. Solar electric cars can be charged anywhere under the Sun without additional infrastructure, but the problem is the size of the solar panel is limited on the roof and the electricity conversion efficiency of the panel is only 15% to 20%. This means they will not provide significant electricity to EVs. An effective way to increase efficiency is to utilize multi-junction solar cells with concentrator photovoltaic (CPV) technology. The challenge is that the moving sun-tracking mechanism will reduce the stability of the vehicle structure. To solve this issue, in this research, we present a static concentrator photovoltaic system for electric vehicles. This structure is more stable and simpler than CPV systems using sun-tracking mechanisms and thus suitable for car roof application. The CPV system includes solid compound parabolic concentrators (CPCs), three-junction solar cells, and a crystalline Si cell panel. This structure allows for the manufacture of a static CPV with a geometrical concentration ratio of 4× for three-junction cells. The simulation results showed that the module can achieve 25% annual efficiency. Moreover, it can be flexible to meet the requirements of car roof application.

Suggested Citation

  • Hoang Vu & Ngoc Hai Vu & Seoyong Shin, 2022. "Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator," Energies, MDPI, vol. 15(19), pages 1-10, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6951-:d:922417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoang Vu & Tran Quoc Tien & Jongbin Park & Meeryoung Cho & Ngoc Hai Vu & Seoyong Shin, 2022. "Waveguide Concentrator Photovoltaic with Spectral Splitting for Dual Land Use," Energies, MDPI, vol. 15(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements," Energies, MDPI, vol. 16(11), pages 1-22, May.
    2. Waseem Iqbal & Irfan Ullah & Seoyong Shin, 2023. "Nonimaging High Concentrating Photovoltaic System Using Trough," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Waseem Iqbal & Irfan Ullah & Seoyong Shin, 2023. "Optical Developments in Concentrator Photovoltaic Systems—A Review," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    4. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations," Energies, MDPI, vol. 15(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    2. Shalom, Ben Aviad & Mittelman, Gur & Kribus, Abraham & Vitoshkin, Helena, 2023. "Optical and electrical performance of an agrivoltaic field with spectral beam splitting," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6951-:d:922417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.