IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6834-d918707.html
   My bibliography  Save this article

Experimental Investigations and Modeling of Atmospheric Water Generation Using a Desiccant Material

Author

Listed:
  • Ahmed Almasarani

    (Energy Engineering, College of Engineering, Effat University, Jeddah 21478, Saudi Arabia)

  • Imtiaz K. Ahmad

    (Natural Sciences, Mathematics and Technology Unit, College of Engineering, Effat University, Jeddah 21478, Saudi Arabia)

  • Mohamed F. El-Amin

    (Energy Research Lab, College of Engineering, Effat University, Jeddah 21478, Saudi Arabia
    Mathematics Department, Faculty of Science, Aswan University, Aswan 81528, Egypt)

  • Tayeb Brahimi

    (Energy Research Lab, College of Engineering, Effat University, Jeddah 21478, Saudi Arabia)

Abstract

Harvesting atmospheric water by solar regenerated desiccants is a promising water source that is energy-efficient, environmentally clean, and viable. However, the generated amounts of water are still insignificant. Therefore, more intensive fundamental research must be undertaken involving experiments and modeling. This paper describes several experiments, which were conducted to predict and improve the behavior of water absorption/desorption by the Calcium Chloride (CaCl 2 ) desiccant, where the uncertainty did not exceed ±3.5%. The absorption effect in a deep container was studied experimentally and then amplified by pumping air into the solution. The latter measured water absorption/desorption by a thin solution layer under variable ambient conditions. Pumping air inside deep liquid desiccant containers increased the water absorption rate to 3.75% per hour, yet when using a thin layer of the solution, it was found to have increased to 6.5% per hour under the same conditions. The maximum amount of absorbed water and water vapor partial pressure relation was investigated, and the mean absolute error between the proposed formula and measured water content was 6.9%. An empirical formula, a one-dimensional mathematical model, was then developed by coupling three differential equations and compared to experimental data. The mean absolute error of the model was found to be 3.13% and 7.32% for absorption and desorption, respectively. Governing mathematical conservation equations were subsequently formulated. The mathematical and empirical models were combined and solved numerically. Findings obtained from the simulation were compared to experimental data. Additionally, several scenarios were modeled and tested for Jeddah, Saudi Arabia, under various conditions.

Suggested Citation

  • Ahmed Almasarani & Imtiaz K. Ahmad & Mohamed F. El-Amin & Tayeb Brahimi, 2022. "Experimental Investigations and Modeling of Atmospheric Water Generation Using a Desiccant Material," Energies, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6834-:d:918707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shereen K. Sibie & Mohamed F. El-Amin & Shuyu Sun, 2021. "Modeling of Water Generation from Air Using Anhydrous Salts," Energies, MDPI, vol. 14(13), pages 1-21, June.
    2. Yinyin Wang & Suad Hassan Danook & Hussein A.Z. AL-bonsrulah & Dhinakaran Veeman & Fuzhang Wang, 2022. "A Recent and Systematic Review on Water Extraction from the Atmosphere for Arid Zones," Energies, MDPI, vol. 15(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senthil Kumar Madasamy & Vijayanandh Raja & Hussein A Z AL-bonsrulah & Mohammed Al-Bahrani, 2022. "Design, development and multi-disciplinary investigations of aerodynamic, structural, energy and exergy factors on 1 kW horizontal-axis wind turbine [Composite materials for wind power turbine blad," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1292-1318.
    2. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    3. Farah G. Fahad & Shurooq T. Al-Humairi & Amged T. Al-Ezzi & Hasan Sh. Majdi & Abbas J. Sultan & Thaqal M. Alhuzaymi & Thaar M. Aljuwaya, 2023. "Advancements in Liquid Desiccant Technologies: A Comprehensive Review of Materials, Systems, and Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    4. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6834-:d:918707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.