IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6807-d917712.html
   My bibliography  Save this article

Subsurface Water Retention Technology Promotes Drought Stress Tolerance in Field-Grown Tomato

Author

Listed:
  • Soufiane Lahbouki

    (Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
    Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
    Laboratory of Nanomaterials for Energy and Environment Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco)

  • Abdelilah Meddich

    (Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
    Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco)

  • Raja Ben-Laouane

    (Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
    Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco)

  • Abdelkader Outzourhit

    (Laboratory of Nanomaterials for Energy and Environment Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco)

  • Luigi Pari

    (CREA Research Centre for Engineering and Agro-Food Processing, Via della Pascolare, 16, Monterotondo, 00015 Rome, Italy)

Abstract

Agricultural activities depend heavily on irrigation in arid and semi-arid climates, which are one of the most water-limited areas, reducing agricultural productivity. As the climate changes, the lack of precipitation is expected to aggravate in these areas, requiring careful management of water use. Subsurface water retention technology (SWRT) may hold promise as a management tool to save water use and improve crop drought resistance. In this context, the effect of SWRT on tomato yield, growth, physiology, and biochemical characteristics, as well as soil characteristics under two regimes of water (100% field capacity (FC) and 50% FC) in open field conditions, was investigated. The results here suggest that drought affected tomato performance. Nevertheless, SWRT application significantly increased tomato yield (38%), chlorophyll fluorescence (3%), gas exchange (39%), and chlorophyll total content (49%), as well as soil fertility characteristics, with significant increases in organic matter (23%) and assimilable phosphorus contents (25%) compared with the control. Furthermore, it resulted in a significant reduction in enzymatic antioxidant activities and polyphenol and significant improvement in fruit quality by increasing protein content. This technique should be used as a valuable strategy to save irrigation water and mitigate the negative effects of water deficiency on tomato plants in arid and semi-arid regions.

Suggested Citation

  • Soufiane Lahbouki & Abdelilah Meddich & Raja Ben-Laouane & Abdelkader Outzourhit & Luigi Pari, 2022. "Subsurface Water Retention Technology Promotes Drought Stress Tolerance in Field-Grown Tomato," Energies, MDPI, vol. 15(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6807-:d:917712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houda Besser & Younes Hamed, 2021. "Environmental impacts of land management on the sustainability of natural resources in Oriental Erg Tunisia, North Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11677-11705, August.
    2. Abdelkhalik, Abdelsattar & Pascual-Seva, Nuria & Nájera, Inmaculada & Giner, Alfonso & Baixauli, Carlos & Pascual, Bernardo, 2019. "Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 212(C), pages 99-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Bao, Lei & Zhang, Saifeng & Liang, Xinyu & Wang, Peizhou & Guo, Yawen & Sun, Qinghao & Zhou, Jianbin & Chen, Zhujun, 2023. "Intelligent drip fertigation increases water and nutrient use efficiency of watermelon in greenhouse without compromising the yield," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Yavuz, Duran & Seymen, Musa & Süheri, Sinan & Yavuz, Nurcan & Türkmen, Önder & Kurtar, Ertan Sait, 2020. "How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation?," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Auwalu Faisal Koko & Zexu Han & Yue Wu & Siyuan Zhang & Nan Ding & Jiayang Luo, 2023. "Spatiotemporal Analysis and Prediction of Urban Land Use/Land Cover Changes Using a Cellular Automata and Novel Patch-Generating Land Use Simulation Model: A Study of Zhejiang Province, China," Land, MDPI, vol. 12(8), pages 1-21, August.
    5. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Wang, Zeyi & Yu, Shouchao & Zhang, Hengjia & Lei, Lian & Liang, Chao & Chen, Lili & Su, Dandan & Li, Xuan, 2023. "Deficit mulched drip irrigation improves yield, quality, and water use efficiency of watermelon in a desert oasis region," Agricultural Water Management, Elsevier, vol. 277(C).
    7. Mudahir Ozgul & Turgay Dindaroglu, 2021. "Multi-criteria analysis for mapping of environmentally sensitive areas in a karst ecosystem," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16529-16559, November.
    8. Latifa Dhaouadi & Houda Besser & Nissaf Karbout & Rabeb Khaldi & Zied Haj-Amor & Sihem Maachia & Fatma Ouassar, 2022. "Environmental sensitivity and risk assessment in the Saharan Tunisian oasis agro-systems using the deepest water table source for irrigation: water quality and land management impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10695-10727, September.
    9. Huanhuan Yuan & Jianliang Zhang & Zhi Wang & Zhedong Qian & Xiaoyue Wang & Wanggu Xu & Haonan Zhang, 2023. "Multi-Temporal Change of LULC and Its Impact on Carbon Storage in Jiangsu Coastal, China," Land, MDPI, vol. 12(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6807-:d:917712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.