IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6771-d916524.html
   My bibliography  Save this article

Design of an Infrared Image Processing Pipeline for Robotic Inspection of Conveyor Systems in Opencast Mining Sites

Author

Listed:
  • Mohammad Siami

    (AMC Vibro Sp. z o.o., Pilotow 2e, 31-462 Kraków, Poland)

  • Tomasz Barszcz

    (Department of Robotics and Mechatronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Jacek Wodecki

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

  • Radoslaw Zimroz

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

Conveying systems play an essential role in the continuous horizontal transportation of raw materials in mining sites. Regular inspections of conveyor system structures and their components, especially idlers, are essential for proper maintenance. Traditional inspection methods are labor-intensive and hazardous; therefore, robot-based thermography can be considered a quality assessment tool for the precise detection and localization of overheated idlers in opencast mining sites. This paper proposes an infrared image processing pipeline for the automatic detection and analysis of overheated idlers. The proposed image processing pipeline can be used for the identification of significant temperature anomalies such as hotspots and hot areas in infrared images. For the identification of such defects in idlers, firstly, the histogram of captured infrared images was analyzed and improved through the pre-processing stages. Afterward, the location of thermal anomalies in infrared images was extracted. Finally, for the validation of segmentation results, the shapes and locations of segmented hot spots were compared with RGB images that were synchronized by captured infrared images. A quantitative evaluation of the proposed method for the condition monitoring of belt conveyor idlers in an open-cast mining site shows the applicability of our approach.

Suggested Citation

  • Mohammad Siami & Tomasz Barszcz & Jacek Wodecki & Radoslaw Zimroz, 2022. "Design of an Infrared Image Processing Pipeline for Robotic Inspection of Conveyor Systems in Opencast Mining Sites," Energies, MDPI, vol. 15(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6771-:d:916524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Przemyslaw Dabek & Jaroslaw Szrek & Radoslaw Zimroz & Jacek Wodecki, 2022. "An Automatic Procedure for Overheated Idler Detection in Belt Conveyors Using Fusion of Infrared and RGB Images Acquired during UGV Robot Inspection," Energies, MDPI, vol. 15(2), pages 1-20, January.
    2. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Zhironkin & Dawid Szurgacz, 2023. "Mining Technologies Innovative Development II: The Overview," Energies, MDPI, vol. 16(15), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Bortnowski & Horst Gondek & Robert Król & Daniela Marasova & Maksymilian Ozdoba, 2023. "Detection of Blockages of the Belt Conveyor Transfer Point Using an RGB Camera and CNN Autoencoder," Energies, MDPI, vol. 16(4), pages 1-18, February.
    2. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Sergey Zhironkin, 2022. "Development of a Hydraulic System for the Automatic Expansion of Powered Roof Support," Energies, MDPI, vol. 15(3), pages 1-15, January.
    3. Hamid Shiri & Jacek Wodecki & Bartłomiej Ziętek & Radosław Zimroz, 2021. "Inspection Robotic UGV Platform and the Procedure for an Acoustic Signal-Based Fault Detection in Belt Conveyor Idler," Energies, MDPI, vol. 14(22), pages 1-17, November.
    4. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    5. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.
    6. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    8. Mirosław Bajda & Monika Hardygóra & Daniela Marasová, 2022. "Energy Efficiency of Conveyor Belts in Raw Materials Industry," Energies, MDPI, vol. 15(9), pages 1-6, April.
    9. Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.
    10. Karol Semrád & Katarína Draganová, 2023. "Implementation of Magnetic Markers for the Diagnostics of Conveyor Belt Transportation Systems," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    11. Karol Semrád & Katarína Draganová, 2022. "Non-Destructive Testing of Pipe Conveyor Belts Using Glass-Coated Magnetic Microwires," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    12. Sergey Zhironkin & Elena Dotsenko, 2023. "Review of Transition from Mining 4.0 to 5.0 in Fossil Energy Sources Production," Energies, MDPI, vol. 16(15), pages 1-35, August.
    13. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
    14. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6771-:d:916524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.