IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6688-d913861.html
   My bibliography  Save this article

Quantitative Comparisons of Outer-Rotor Permanent Magnet Machines of Different Structures/Phases for In-Wheel Electrical Vehicle Application

Author

Listed:
  • Jinlin Gong

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Benteng Zhao

    (School of Electrical Engineering, Shandong University, Jinan 250061, China
    China Astronaut Research and Training Center, Beijing 100094, China)

  • Youxi Huang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Eric Semail

    (Laboratory of Electrical Engineering and Power Electronics of Lille (L2ep), Arts et Métiers, 59043 Lille, France)

  • Ngac Ky Nguyen

    (Laboratory of Electrical Engineering and Power Electronics of Lille (L2ep), Arts et Métiers, 59043 Lille, France)

Abstract

As one of the key components, low-speed direct-drive in-wheel machines with high compact volume and high torque density are important for the traction system of electric vehicles (EVs). This paper introduces four different types of outer-rotor permanent magnet motors for EVs, including one five-phase SPM machine, one three-phase IPM machine with V-shaped PMs, one seven-phase axial flux machine (AFM) of sandwich structure and finally one hybrid flux (radial and axial) machine with a third rotor with V-shaped PMs added to the AFM. Firstly, the design criteria and basic operation principle are compared and discussed. Then, the key properties are analyzed using the Finite Element Method (FEM). The electromagnetic properties of the four fractional slot tooth concentrated winding in-wheel motors with similar dimensions are quantitatively compared, including air-gap flux density, electromotive force, field weakening capability, torque density, losses, and fault tolerant capability. The results show that the multi-phase motors have high torque density and high fault tolerance and are suitable for direct drive applications in EVs.

Suggested Citation

  • Jinlin Gong & Benteng Zhao & Youxi Huang & Eric Semail & Ngac Ky Nguyen, 2022. "Quantitative Comparisons of Outer-Rotor Permanent Magnet Machines of Different Structures/Phases for In-Wheel Electrical Vehicle Application," Energies, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6688-:d:913861
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jong Myung Kim & Jae Young Jang & Jaewon Chung & Young Jin Hwang, 2019. "A New Outer-Rotor Hybrid-Excited Flux-Switching Machine Employing the HTS Homopolar Topology," Energies, MDPI, vol. 12(14), pages 1-17, July.
    2. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    3. Mustafa Tumbek & Selami Kesler, 2019. "Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-20, August.
    4. Kritika Deepak & Mohamed Amine Frikha & Yassine Benômar & Mohamed El Baghdadi & Omar Hegazy, 2023. "In-Wheel Motor Drive Systems for Electric Vehicles: State of the Art, Challenges, and Future Trends," Energies, MDPI, vol. 16(7), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6688-:d:913861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.