IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6417-d904875.html
   My bibliography  Save this article

An Open Digital Platform to Support Interdisciplinary Energy Research and Practice—Conceptualization

Author

Listed:
  • Stephan Ferenz

    (Department of Computer Science, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
    Energy Division, OFFIS—Institute for Information Technology, 24105 Oldenburg, Germany)

  • Annika Ofenloch

    (Energy Division, OFFIS—Institute for Information Technology, 24105 Oldenburg, Germany)

  • Fernando Penaherrera Vaca

    (Department of Computer Science, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
    Energy Division, OFFIS—Institute for Information Technology, 24105 Oldenburg, Germany)

  • Henrik Wagner

    (Elenia Institute for High Voltage Technology and Power Systems, Technische Universität Braunschweig, 38106 Braunschweig, Germany)

  • Oliver Werth

    (Information Systems Institute, Leibniz University Hannover, 30167 Hannover, Germany)

  • Michael H. Breitner

    (Information Systems Institute, Leibniz University Hannover, 30167 Hannover, Germany)

  • Bernd Engel

    (Elenia Institute for High Voltage Technology and Power Systems, Technische Universität Braunschweig, 38106 Braunschweig, Germany)

  • Sebastian Lehnhoff

    (Department of Computer Science, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
    Energy Division, OFFIS—Institute for Information Technology, 24105 Oldenburg, Germany)

  • Astrid Nieße

    (Department of Computer Science, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
    Energy Division, OFFIS—Institute for Information Technology, 24105 Oldenburg, Germany)

Abstract

Energy research itself is changing due to digitalization and the trend to open science. While this change enables new research, it also increases the amount of, and need for, available data and models. Therefore, a platform for open digital energy research and development is required to support researchers and practitioners with their new needs and to enable FAIR (findable, accessible, interoperable and reusable) research data management in energy research. We present a functional and technological concept for such a platform based on six elements: Competence to enable researchers and practitioners to find suitable partners for their projects, Methods to give an overview on the diverse possible research methods within energy research, Repository to support finding data and models for simulation of energy systems, Simulation to couple these models and data to create user-defined simulation scenarios, Transparency to publish results and other content relevant for the different stakeholder in energy research, and Core to interconnect all elements and to offer a unified entry point. We discuss the envisioned use of the outlined platform with use cases addressing three relevant stakeholder groups.

Suggested Citation

  • Stephan Ferenz & Annika Ofenloch & Fernando Penaherrera Vaca & Henrik Wagner & Oliver Werth & Michael H. Breitner & Bernd Engel & Sebastian Lehnhoff & Astrid Nieße, 2022. "An Open Digital Platform to Support Interdisciplinary Energy Research and Practice—Conceptualization," Energies, MDPI, vol. 15(17), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6417-:d:904875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. August Wierling & Valeria Jana Schwanitz & Sebnem Altinci & Maria Bałazińska & Michael J. Barber & Mehmet Efe Biresselioglu & Christopher Burger-Scheidlin & Massimo Celino & Muhittin Hakan Demir & Ric, 2021. "FAIR Metadata Standards for Low Carbon Energy Research—A Review of Practices and How to Advance," Energies, MDPI, vol. 14(20), pages 1-20, October.
    2. Pfenninger, Stefan & Hirth, Lion & Schlecht, Ingmar & Schmid, Eva & Wiese, Frauke & Brown, Tom & Davis, Chris & Gidden, Matthew & Heinrichs, Heidi & Heuberger, Clara & Hilpert, Simon & Krien, Uwe & Ma, 2018. "Opening the black box of energy modelling: Strategies and lessons learned," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19, pages 63-71.
    3. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malek Al-Chalabi, 2023. "Targeted and Tangential Effects—A Novel Framework for Energy Research and Practitioners," Sustainability, MDPI, vol. 15(17), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    2. Germeshausen, Robert & Wölfing, Nikolas, 2019. "How marginal is lignite? Two simple approaches to determine price-setting technologies in power markets," ZEW Discussion Papers 19-031, ZEW - Leibniz Centre for European Economic Research.
    3. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    4. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.
    5. Jens Weibezahn & Mario Kendziorski, 2019. "Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language," Energies, MDPI, vol. 12(6), pages 1-21, March.
    6. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    7. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Germeshausen, Robert & Wölfing, Nikolas, 2020. "How marginal is lignite? Two simple approaches to determine price-setting technologies in power markets," Energy Policy, Elsevier, vol. 142(C).
    9. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    10. Kueppers, Martin & Paredes Pineda, Stephany Nicole & Metzger, Michael & Huber, Matthias & Paulus, Simon & Heger, Hans Joerg & Niessen, Stefan, 2021. "Decarbonization pathways of worldwide energy systems – Definition and modeling of archetypes," Applied Energy, Elsevier, vol. 285(C).
    11. Lerede, D. & Bustreo, C. & Gracceva, F. & Saccone, M. & Savoldi, L., 2021. "Techno-economic and environmental characterization of industrial technologies for transparent bottom-up energy modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.
    13. Dall-Orsoletta, Alaize & Romero, Fernando & Ferreira, Paula, 2022. "Open and collaborative innovation for the energy transition: An exploratory study," Technology in Society, Elsevier, vol. 69(C).
    14. Candas, Soner & Muschner, Christoph & Buchholz, Stefanie & Bramstoft, Rasmus & van Ouwerkerk, Jonas & Hainsch, Karlo & Löffler, Konstantin & Günther, Stephan & Berendes, Sarah & Nguyen, Stefanie & Jus, 2022. "Code exposed: Review of five open-source frameworks for modeling renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    16. Süsser, Diana & Gaschnig, Hannes & Ceglarz, Andrzej & Stavrakas, Vassilis & Flamos, Alexandros & Lilliestam, Johan, 2022. "Better suited or just more complex? On the fit between user needs and modeller-driven improvements of energy system models," Energy, Elsevier, vol. 239(PB).
    17. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2022. "Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-38, June.
    18. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    19. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    20. Manfren, Massimiliano & Nastasi, Benedetto & Tronchin, Lamberto & Groppi, Daniele & Garcia, Davide Astiaso, 2021. "Techno-economic analysis and energy modelling as a key enablers for smart energy services and technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6417-:d:904875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.