IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6213-d898352.html
   My bibliography  Save this article

About Hydrophobicity of Lignin: A Review of Selected Chemical Methods for Lignin Valorisation in Biopolymer Production

Author

Listed:
  • Anton Lisý

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology STU in Bratislava, 81237 Bratislava, Slovakia)

  • Aleš Ház

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology STU in Bratislava, 81237 Bratislava, Slovakia)

  • Richard Nadányi

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology STU in Bratislava, 81237 Bratislava, Slovakia)

  • Michal Jablonský

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology STU in Bratislava, 81237 Bratislava, Slovakia)

  • Igor Šurina

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology STU in Bratislava, 81237 Bratislava, Slovakia)

Abstract

Lignin is the second most abundant renewable natural polymer that occurs on Earth, and as such, it should be widely utilised by industries in a variety of applications. However, these applications and possible research seem to be limited or prevented by a variety of factors, mainly the high heterogeneity of lignin. Selective modifications of the structure and of functional groups allow better properties in material applications, whereas the separation of different qualitative lignin groups permits selective application in industry. This review is aimed at modification of the lignin structure, increasing the hydrophobicity of the produced materials, and focusing on several perspective modifications for industrial-scale production of lignin-based polymers, as well as challenges, opportunities, and other important factors to take into consideration.

Suggested Citation

  • Anton Lisý & Aleš Ház & Richard Nadányi & Michal Jablonský & Igor Šurina, 2022. "About Hydrophobicity of Lignin: A Review of Selected Chemical Methods for Lignin Valorisation in Biopolymer Production," Energies, MDPI, vol. 15(17), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6213-:d:898352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Gwon Woo & Gong, Gyeongtaek & Joo, Jeong Chan & Song, Jinju & Lee, Jiye & Lee, Joon-Pyo & Kim, Hee Taek & Ryu, Mi Hee & Sirohi, Ranjna & Zhuang, Xinshu & Min, Kyoungseon, 2022. "Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    2. Neethi Rajagopalan & Iris Winberg & Olesya Fearon & Giuseppe Cardellini & Tiina Liitia & Anna Kalliola, 2022. "Environmental Performance of Oxidized Kraft Lignin-Based Products," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    3. Beims, Ramon Filipe & Arredondo, Rosa & Sosa Carrero, Dennise Johanna & Yuan, Zhongshun & Li, Hongwei & Shui, Hengfu & Zhang, Yongsheng & Leitch, Mathew & Xu, Chunbao Charles, 2022. "Functionalized wood as bio-based advanced materials: Properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Mariana Hassegawa & Jo Van Brusselen & Mathias Cramm & Pieter Johannes Verkerk, 2022. "Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability," Land, MDPI, vol. 11(12), pages 1-16, November.
    5. Hegne Pupart & Piia Jõul & Melissa Ingela Bramanis & Tiit Lukk, 2023. "Characterization of the Ensemble of Lignin-Remodeling DyP-Type Peroxidases from Streptomyces coelicolor A3(2)," Energies, MDPI, vol. 16(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6213-:d:898352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.