IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6151-d896708.html
   My bibliography  Save this article

Research on Carbon Emission Reduction Investment Decision of Power Energy Supply Chain—Based on the Analysis of Carbon Trading and Carbon Subsidy Policies

Author

Listed:
  • Cheng Che

    (School of Economics and Management, China University of Petroleum (East China), Qindao 266580, China)

  • Huixian Zheng

    (School of Economics and Management, China University of Petroleum (East China), Qindao 266580, China)

  • Xin Geng

    (School of Economics and Management, China University of Petroleum (East China), Qindao 266580, China)

  • Yi Chen

    (School of Economics and Management, China University of Petroleum (East China), Qindao 266580, China)

  • Xiaoguang Zhang

    (School of Economics and Management, China University of Petroleum (East China), Qindao 266580, China)

Abstract

This study examines the carbon reduction investment decisions of the electric power energy supply chain considering carbon trading and carbon subsidy policies in China’s “dual carbon” context. By building a three-level supply chain system including electric power producers, retailers, and consumers, we discuss the optimal decision-making problem of the supply chain for three models of decentralized supply chain decision making without government subsidies, centralized supply chain decision making with government subsidies, and centralized supply chain decision making with government subsidies and carbon emission reduction cost sharing. Through model solving and further numerical simulations, the results showed that the increase in carbon emission reduction investment cost has a significant negative impact on power price and the total expected income of the supply chain. However, a reasonable level of government carbon emission reduction subsidy can effectively alleviate the increase in power price and improve the total expected income of supply chain. In addition, carbon mission reduction investment and supply chain cost allocation can effectively improve the carbon emission reduction level of the power supply chain, improve the income and enthusiasm of electric power producers, and realize the sustainable development of electric power energy consumption and the environment.

Suggested Citation

  • Cheng Che & Huixian Zheng & Xin Geng & Yi Chen & Xiaoguang Zhang, 2022. "Research on Carbon Emission Reduction Investment Decision of Power Energy Supply Chain—Based on the Analysis of Carbon Trading and Carbon Subsidy Policies," Energies, MDPI, vol. 15(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6151-:d:896708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Lei & Zhang, Qin & Ji, Jingna, 2017. "Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation," International Journal of Production Economics, Elsevier, vol. 191(C), pages 286-297.
    2. Elkhan Richard Sadik-Zada & Mattia Ferrari, 2020. "Environmental Policy Stringency, Technical Progress and Pollution Haven Hypothesis," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    3. Bin Liu & Tao Li & Sang-Bing Tsai, 2017. "Low Carbon Strategy Analysis of Competing Supply Chains with Different Power Structures," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gudivada Durga Bhavani & Ieva Meidute-Kavaliauskiene & Ghanshaym S. Mahapatra & Renata Činčikaitė, 2022. "Pythagorean Fuzzy Storage Capacity with Controllable Carbon Emission Incorporating Green Technology Investment on a Two-Depository System," Energies, MDPI, vol. 15(23), pages 1-34, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Yang & Meng Chen & Yiji Cai & Sang-Bing Tsai, 2018. "Manufacturer’s Decision as Consumers’ Low-Carbon Preference Grows," Sustainability, MDPI, vol. 10(4), pages 1-26, April.
    2. Changhong Li & Jialuo Wang & Jiao Zheng & Jiani Gao, 2022. "Effects of Carbon Policy on Carbon Emission Reduction in Supply Chain under Uncertain Demand," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    3. Guang Zhu & Gaozhi Pan & Weiwei Zhang, 2018. "Evolutionary Game Theoretic Analysis of Low Carbon Investment in Supply Chains under Governmental Subsidies," IJERPH, MDPI, vol. 15(11), pages 1-27, November.
    4. Xiaoyan Wang & Minggao Xue & Lu Xing, 2018. "Analysis of Carbon Emission Reduction in a Dual-Channel Supply Chain with Cap-And-Trade Regulation and Low-Carbon Preference," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    5. Yuyin Yi & Jinxi Li, 2018. "Cost-Sharing Contracts for Energy Saving and Emissions Reduction of a Supply Chain under the Conditions of Government Subsidies and a Carbon Tax," Sustainability, MDPI, vol. 10(3), pages 1-33, March.
    6. Aleksandra Jezierska-Thöle & Roman Rudnicki & Łukasz Wiśniewski & Marta Gwiaździńska-Goraj & Mirosław Biczkowski, 2021. "The Agri-Environment-Climate Measure as an Element of the Bioeconomy in Poland—A Spatial Study," Agriculture, MDPI, vol. 11(2), pages 1-19, February.
    7. Carmen Díaz-Roldán & María del Carmen Ramos-Herrera, 2021. "Innovations and ICT: Do They Favour Economic Growth and Environmental Quality?," Energies, MDPI, vol. 14(5), pages 1-17, March.
    8. Jianyun Zhang & Xinxin Li & Lingying Pan, 2022. "Policy Effect on Clean Coal-Fired Power Development in China," Energies, MDPI, vol. 15(3), pages 1-18, January.
    9. Daozhi Zhao & Jiaqin Hao & Cejun Cao & Hongshuai Han, 2019. "Evolutionary Game Analysis of Three-Player for Low-Carbon Production Capacity Sharing," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    10. Dong‐dong Wang & Kangzhou Wang, 2022. "Evolutionary game analysis of low‐carbon effort decisions in the supply chain considering fairness concerns," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(5), pages 1224-1239, July.
    11. Mirosław Biczkowski & Aleksandra Jezierska-Thöle & Roman Rudnicki, 2021. "The Impact of RDP Measures on the Diversification of Agriculture and Rural Development—Seeking Additional Livelihoods: The Case of Poland," Agriculture, MDPI, vol. 11(3), pages 1-26, March.
    12. Xiaowei Song & Yongpei Hao, 2021. "Research on the Vehicle Emission Characteristics and Its Prevention and Control Strategy in the Central Plains Urban Agglomeration, China," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    13. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    14. Asongu, Simplice & Odhiambo, Nicholas, 2020. "The role of governance in quality education in sub-Saharan Africa," MPRA Paper 107497, University Library of Munich, Germany.
    15. Wensi Zhang & Jing Xiao & Lingfei Cai, 2020. "Joint Emission Reduction Strategy in Green Supply Chain under Environmental Regulation," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    16. Xianliang Shi & Genzhu Li & Ciwei Dong & Yefei Yang, 2020. "Value Co-Creation Behavior in Green Supply Chains: An Empirical Study," Energies, MDPI, vol. 13(15), pages 1-26, July.
    17. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2023. "Civic engagement and energy transition in the Nordic-Baltic Sea Region: Parametric and nonparametric inquiries," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    18. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    19. Xinyue Yang & Ye Song & Mingjun Sun & Hongjun Peng, 2020. "Strategies for Capital Constrained Timber and Carbon Sink Supply Chain under the Cap-and-Trade Scheme," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    20. Jingci Xie & Jianjian Liu & Xin Huo & Qingchun Meng & Mengyu Chu, 2021. "Fresh Food Dual-Channel Supply Chain Considering Consumers’ Low-Carbon and Freshness Preferences," Sustainability, MDPI, vol. 13(11), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6151-:d:896708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.