IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6074-d894322.html
   My bibliography  Save this article

A Rapid Solver for the Prediction of Flow-Field of High-Speed Vehicle Moving in a Tube

Author

Listed:
  • Mohammed Abdulla

    (Aerospace Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Khalid A. Juhany

    (Aerospace Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

High-speed vehicles traveling in a tube with pressures similar to those experienced by aircraft at their maximum altitude are presented. Although the concept resembles Hyperloop, the pressure level investigated here is much higher and safer than that suggested by Hyperloop, and, therefore, the system design is markedly different. Calculating a vehicle’s aerodynamic performance in the initial design stages requires low-budget computational tools to enable iterative design processes. This study presents an algorithm for rapid flow-field prediction based on a one-dimensional Reimann solution, including viscosity and heat transfer effects. The flow-field is divided into near- and far-fields, where the near-field represents the solution directly around the vehicle. The far-field demonstrates the impact of the vehicle’s motion on the vehicle’s flow-field upstream and downstream. Two-dimensional URANS models are compared to the current numerical scheme. The developed algorithm analyzes the flow-field and the propagation of pressure waves along the tube to simulate the vehicle’s movement. The one-dimensional model shows the robustness and predictability of the near and far flow-fields. The results from the developed scheme provide good agreement, with less than a few percent deviations, compared to CFD simulations but with significantly lower computational resources.

Suggested Citation

  • Mohammed Abdulla & Khalid A. Juhany, 2022. "A Rapid Solver for the Prediction of Flow-Field of High-Speed Vehicle Moving in a Tube," Energies, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6074-:d:894322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thi Thanh Giang Le & Kyeong Sik Jang & Kwan-Sup Lee & Jaiyoung Ryu, 2020. "Numerical Investigation of Aerodynamic Drag and Pressure Waves in Hyperloop Systems," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    2. Aditya Bose & Vimal K. Viswanathan, 2021. "Mitigating the Piston Effect in High-Speed Hyperloop Transportation: A Study on the Use of Aerofoils," Energies, MDPI, vol. 14(2), pages 1-18, January.
    3. Jae-Sung Oh & Taehak Kang & Seokgyun Ham & Kwan-Sup Lee & Yong-Jun Jang & Hong-Sun Ryou & Jaiyoung Ryu, 2019. "Numerical Analysis of Aerodynamic Characteristics of Hyperloop System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Zheng & Cong Hu & Bin Zhao & Xiaobao Su & Gang Wang & Xiaowan Hou, 2022. "Design for a Four-Stage DC/DC High-Voltage Converter with High Precision and a Small Ripple," Energies, MDPI, vol. 16(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Zhou & Chao Xia & Xizhuang Shan & Zhigang Yang, 2022. "Numerical Study on the Aerodynamics of the Evacuated Tube Transportation System from Subsonic to Supersonic," Energies, MDPI, vol. 15(9), pages 1-19, April.
    2. Lambros Mitropoulos & Annie Kortsari & Alexandros Koliatos & Georgia Ayfantopoulou, 2021. "The Hyperloop System and Stakeholders: A Review and Future Directions," Sustainability, MDPI, vol. 13(15), pages 1-28, July.
    3. Jerzy Kisilowski & Rafał Kowalik, 2020. "Displacements of the Levitation Systems in the Vehicle Hyperloop," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Thanh Dam Mai & Jaiyoung Ryu, 2021. "Effects of Damaged Rotor Blades on the Aerodynamic Behavior and Heat-Transfer Characteristics of High-Pressure Gas Turbines," Mathematics, MDPI, vol. 9(6), pages 1-21, March.
    5. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    6. Xiaoming Zhou & Fang Fang & Yadong Li, 2022. "Numerical Method for System Level Simulation of Long-Distance Pneumatic Conveying Pipelines," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    7. Thi Thanh Giang Le & Kyeong Sik Jang & Kwan-Sup Lee & Jaiyoung Ryu, 2020. "Numerical Investigation of Aerodynamic Drag and Pressure Waves in Hyperloop Systems," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    8. Donggun Son & Jungil Lee, 2023. "A Periodically Rotating Distributed Forcing of Flow over a Sphere for Drag Reduction," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    9. Jungyoul Lim & Chang-Young Lee & Jin-Ho Lee & Wonhee You & Kwan-Sup Lee & Suyong Choi, 2020. "Design Model of Null-Flux Coil Electrodynamic Suspension for the Hyperloop," Energies, MDPI, vol. 13(19), pages 1-21, September.
    10. Eric Chaidez & Shankar P. Bhattacharyya & Adonios N. Karpetis, 2019. "Levitation Methods for Use in the Hyperloop High-Speed Transportation System," Energies, MDPI, vol. 12(21), pages 1-18, November.
    11. Olena Stryhunivska & Katarzyna Gdowska & Rafał Rumin, 2020. "A Concept of Integration of a Vactrain Underground Station with the Solidarity Transport Hub Poland," Energies, MDPI, vol. 13(21), pages 1-23, November.
    12. Jinho Lee & Wonhee You & Jungyoul Lim & Kwan-Sup Lee & Jae-Yong Lim, 2021. "Development of the Reduced-Scale Vehicle Model for the Dynamic Characteristic Analysis of the Hyperloop," Energies, MDPI, vol. 14(13), pages 1-13, June.
    13. Sui, Yang & Niu, Jiqiang & Yu, Qiujun & Yuan, Yanping & Cao, Xiaoling & Yang, Xiaofeng, 2021. "Numerical analysis of the aerothermodynamic behavior of a Hyperloop in choked flow," Energy, Elsevier, vol. 237(C).
    14. Seung Il Baek & Jaiyoung Ryu & Joon Ahn, 2021. "Large Eddy Simulation of Film Cooling with Forward Expansion Hole: Comparative Study with LES and RANS Simulations," Energies, MDPI, vol. 14(8), pages 1-19, April.
    15. Janusz Piechna, 2021. "Low Pressure Tube Transport—An Alternative to Ground Road Transport—Aerodynamic and Other Problems and Possible Solutions," Energies, MDPI, vol. 14(13), pages 1-33, June.
    16. Aditya Bose & Vimal K. Viswanathan, 2021. "Mitigating the Piston Effect in High-Speed Hyperloop Transportation: A Study on the Use of Aerofoils," Energies, MDPI, vol. 14(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6074-:d:894322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.