IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5938-d889757.html
   My bibliography  Save this article

Syntheses and Photovoltaic Properties of New Pyrazine-Based Organic Photosensitizers for Dye-Sensitized Solar Cells

Author

Listed:
  • Mi-Ra Kim

    (Department of Chemistry, Pukyong National University, Busan 48513, Korea)

  • Thanh Chung Pham

    (Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea)

  • Yeonghwan Choi

    (Department of Chemistry, Pukyong National University, Busan 48513, Korea)

  • Seah Yang

    (Department of Chemistry, Pukyong National University, Busan 48513, Korea)

  • Hyun-Seock Yang

    (Department of Physics, Pukyong National University, Busan 48513, Korea)

  • Sung Heum Park

    (Department of Physics, Pukyong National University, Busan 48513, Korea)

  • Mijeong Kang

    (Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea)

  • Songyi Lee

    (Department of Chemistry, Pukyong National University, Busan 48513, Korea
    Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea)

Abstract

Three novel pyrazine-based organic photosensitizers denoted as TPP, TPPS, and TPPF were synthesized for dye-sensitized solar cell (DSSC) studies. Chemical structures of the pyrazine-based photosensitizers were designed with pyrazine derivatives as acceptors, triphenylamine groups as donors, and the thiophene–cyanoacryl group as an auxiliary heterocyclic linkers-acceptor. Using UV-vis spectrophotometry, cyclic voltammetry, and density functional theory calculations, optical and electrochemical characteristics of these pyrazine-based photosensitizers were examined and explored in relation to photovoltaic parameters. The effects of the molecular structures of these photosensitizers on the performances of DSSCs were also investigated. The overall conversion efficiencies of DSSCs based on pyrazine-based photosensitizers were 1.31~2.64% under AM 1.5 irradiation of 100 mW/cm 2 . To confirm the effect of interfacial charge transfer on photovoltaic performances of DSSC based on pyrazine-based photosensitizers, interfacial charge transfer resistances were investigated by electrical impedance spectroscopy (EIS) measurements.

Suggested Citation

  • Mi-Ra Kim & Thanh Chung Pham & Yeonghwan Choi & Seah Yang & Hyun-Seock Yang & Sung Heum Park & Mijeong Kang & Songyi Lee, 2022. "Syntheses and Photovoltaic Properties of New Pyrazine-Based Organic Photosensitizers for Dye-Sensitized Solar Cells," Energies, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5938-:d:889757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris A. Chalkias & Christos Charalampopoulos & Stefania Aivali & Aikaterini K. Andreopoulou & Aggeliki Karavioti & Elias Stathatos, 2021. "A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. In Chung & Byunghong Lee & Jiaqing He & Robert P. H. Chang & Mercouri G. Kanatzidis, 2012. "All-solid-state dye-sensitized solar cells with high efficiency," Nature, Nature, vol. 485(7399), pages 486-489, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmen Coppola & Maria Laura Parisi & Adalgisa Sinicropi, 2023. "The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells," Energies, MDPI, vol. 16(2), pages 1-4, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minseon Kong & Da Hyeon Oh & Baekseo Choi & Yoon Soo Han, 2022. "Photovoltaic Performance of Dye-Sensitized Solar Cells with a Solid-State Redox Mediator Based on an Ionic Liquid and Hole-Transporting Triphenylamine Compound," Energies, MDPI, vol. 15(8), pages 1-13, April.
    2. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Usman Ghafoor & Anas Bin Aqeel & Uzair Khaleeq uz Zaman & Taiba Zahid & Muhammad Noman & Muhammad Shakeel Ahmad, 2021. "Effect of Molybdenum Disulfide on the Performance of Polyaniline Based Counter Electrode for Dye-Sensitized Solar Cell Applications," Energies, MDPI, vol. 14(13), pages 1-9, June.
    4. Jessica Barichello & Luigi Vesce & Paolo Mariani & Enrico Leonardi & Roberto Braglia & Aldo Di Carlo & Antonella Canini & Andrea Reale, 2021. "Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application," Energies, MDPI, vol. 14(19), pages 1-16, October.
    5. Carmen Coppola & Maria Laura Parisi & Adalgisa Sinicropi, 2023. "The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells," Energies, MDPI, vol. 16(2), pages 1-4, January.
    6. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5938-:d:889757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.