IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3786-d580955.html
   My bibliography  Save this article

Effect of Molybdenum Disulfide on the Performance of Polyaniline Based Counter Electrode for Dye-Sensitized Solar Cell Applications

Author

Listed:
  • Usman Ghafoor

    (Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan)

  • Anas Bin Aqeel

    (Department of Mechatronics Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Uzair Khaleeq uz Zaman

    (Department of Mechatronics Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Taiba Zahid

    (Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan)

  • Muhammad Noman

    (US—Pakistan Center for Advanced Studies in Energy, University of Engineering & Technology, Peshawar 25000, Pakistan)

  • Muhammad Shakeel Ahmad

    (Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia)

Abstract

Dye-sensitized solar cells are gaining interest in the aerospace industry, extending their applications from solar-powered drones to origami-style space-based solar power stations due to their flexibility, light weightiness, and transparency. The major issue with its widespread commercial use is the employment of expensive Pt-based counter electrodes. In this study, an attempt has been made to replace the Pt with Polyaniline (PANI)/Molybdenum sulfide (MoS 2 ) nanocomposite. The nanocomposites i.e., PANI-0.5wt% MoS 2 , PANI-2wt%MoS 2 , PANI-5wt%MoS 2 , and PANI-7wt%MoS 2 and PANI-9wt%MoS 2 , have been synthesized and compared with standard Pt-based CE. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction methods have been utilized to study both surface morphology and structural composition. Fourier transform infrared has also been used to identify redox-active functionalities. Electron impedance spectroscopy and cyclic voltammetry have been employed to study electron transfer and catalytic activity. Finally, I-V testing has been conducted using a sun simulator. A maximum efficiency of 8.12% has been observed with 7wt% MoS 2 in the PANI matrix at 6 µm thickness, which is 2.65% higher compared to standard Pt-based CE (7.91%). This is due to high electronic conduction with the addition of MoS 2 , improved catalytic activity, and the high surface area of the PANI nano-rods.

Suggested Citation

  • Usman Ghafoor & Anas Bin Aqeel & Uzair Khaleeq uz Zaman & Taiba Zahid & Muhammad Noman & Muhammad Shakeel Ahmad, 2021. "Effect of Molybdenum Disulfide on the Performance of Polyaniline Based Counter Electrode for Dye-Sensitized Solar Cell Applications," Energies, MDPI, vol. 14(13), pages 1-9, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3786-:d:580955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris A. Chalkias & Christos Charalampopoulos & Stefania Aivali & Aikaterini K. Andreopoulou & Aggeliki Karavioti & Elias Stathatos, 2021. "A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Shakeel Ahmad, Muhammad & Pandey, A.K. & Abd Rahim, Nasrudin, 2017. "Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 89-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandara, T.M.W.J. & DeSilva, L. Ajith & Ratnasekera, J.L. & Hettiarachchi, K.H. & Wijerathna, A.P. & Thakurdesai, Madhavi & Preston, Joshua & Albinsson, I. & Mellander, B.-E., 2019. "High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 282-290.
    2. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Santhosh Sivaraj & Rajasekar Rathanasamy & Gobinath Velu Kaliyannan & Hitesh Panchal & Ali Jawad Alrubaie & Mustafa Musa Jaber & Zafar Said & Saim Memon, 2022. "A Comprehensive Review on Current Performance, Challenges and Progress in Thin-Film Solar Cells," Energies, MDPI, vol. 15(22), pages 1-34, November.
    5. Mi-Ra Kim & Thanh Chung Pham & Yeonghwan Choi & Seah Yang & Hyun-Seock Yang & Sung Heum Park & Mijeong Kang & Songyi Lee, 2022. "Syntheses and Photovoltaic Properties of New Pyrazine-Based Organic Photosensitizers for Dye-Sensitized Solar Cells," Energies, MDPI, vol. 15(16), pages 1-17, August.
    6. Arkan, Foroogh & Izadyar, Mohammad, 2018. "Recent theoretical progress in the organic/metal-organic sensitizers as the free dyes, dye/TiO2 and dye/electrolyte systems; Structural modifications and solvent effects on their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 609-655.
    7. Babar, Falak & Mehmood, Umer & Asghar, Hafza & Mehdi, M. Hassan & Khan, Anwar Ul Haq & Khalid, Hamza & Huda, Noor ul & Fatima, Zaira, 2020. "Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    8. Jessica Barichello & Luigi Vesce & Paolo Mariani & Enrico Leonardi & Roberto Braglia & Aldo Di Carlo & Antonella Canini & Andrea Reale, 2021. "Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application," Energies, MDPI, vol. 14(19), pages 1-16, October.
    9. Carmen Coppola & Maria Laura Parisi & Adalgisa Sinicropi, 2023. "The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells," Energies, MDPI, vol. 16(2), pages 1-4, January.
    10. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    11. Agliuzza, Matteo & Mezza, Alessio & Sacco, Adriano, 2023. "Solar-driven integrated carbon capture and utilization: Coupling CO2 electroreduction toward CO with capture or photovoltaic systems," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3786-:d:580955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.