IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5936-d889741.html
   My bibliography  Save this article

Numerical Analysis on Impact of Thickness of PEM and GDL with and without MPL on Coupling Phenomena in PEFC Operated at Higher Temperature Such as 363 K and 373 K

Author

Listed:
  • Akira Nishimura

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan)

  • Kyohei Toyoda

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan)

  • Daiki Mishima

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan)

  • Syogo Ito

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan)

  • Eric Hu

    (School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia)

Abstract

The aim of this study is to clarify the impact of the thickness of a gas diffusion layer (GDL) and a micro porous layer (MPL) on the distributions of gas, H 2 O, and current density in a polymer electrolyte fuel cell (PEFC) which is operated at 363 K and 373 K and with various thicknesses of polymer electrolyte membrane (PEM) as well as a relative humidity (RH) of supply gas. These investigations are carried out by numerical simulation using the 3D model with COMSOL Multiphysics. In the case of Nafion 115, which is the thicker PEM, the change in the molar concentration of H 2 O from the inlet to the outlet with MPL is larger than that without MPL irrespective of the thickness of GDL, T ini and RH condition. In the case of Nafion NRE-212, which is the thinner PEM, the change in the molar concentration of H 2 O from the inlet to the outlet is larger with MPL than that without MPL in the case of TGP-H-060 (the thicker commercial GDL), while that is smaller with MPL than that without MPL in the case of TGP-H-030 (the thinner commercial GDL). These results exhibit the same tendency as the results of the numerical simulation on the current density.

Suggested Citation

  • Akira Nishimura & Kyohei Toyoda & Daiki Mishima & Syogo Ito & Eric Hu, 2022. "Numerical Analysis on Impact of Thickness of PEM and GDL with and without MPL on Coupling Phenomena in PEFC Operated at Higher Temperature Such as 363 K and 373 K," Energies, MDPI, vol. 15(16), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5936-:d:889741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akira Nishimura & Kyohei Toyoda & Yuya Kojima & Syogo Ito & Eric Hu, 2021. "Numerical Simulation on Impacts of Thickness of Nafion Series Membranes and Relative Humidity on PEMFC Operated at 363 K and 373 K," Energies, MDPI, vol. 14(24), pages 1-24, December.
    2. Ryu, Sung Kwan & Vinothkannan, Mohanraj & Kim, Ae Rhan & Yoo, Dong Jin, 2022. "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120–160 °C," Energy, Elsevier, vol. 238(PB).
    3. Rostami, Leila & Mohamad Gholy Nejad, Puriya & Vatani, Ali, 2016. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 97(C), pages 400-410.
    4. Nishimura, Akira & Yamamoto, Kohei & Okado, Tatsuya & Kojima, Yuya & Hirota, Masafumi & Kolhe, Mohan Lal, 2020. "Impact analysis of MPL and PEM thickness on temperature distribution within PEFC operating at relatively higher temperature," Energy, Elsevier, vol. 205(C).
    5. Akira Nishimura & Tatsuya Okado & Yuya Kojima & Masafumi Hirota & Eric Hu, 2020. "Impact of MPL on Temperature Distribution in Single Polymer Electrolyte Fuel Cell with Various Thicknesses of Polymer Electrolyte Membrane," Energies, MDPI, vol. 13(10), pages 1-17, May.
    6. Xia, Lingchao & Ni, Meng & He, Qijiao & Xu, Qidong & Cheng, Chun, 2021. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity," Applied Energy, Elsevier, vol. 300(C).
    7. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
    8. Akira Nishimura & Yuya Kojima & Syogo Ito & Eric Hu, 2022. "Impacts of Separator Thickness on Temperature Distribution and Power Generation Characteristics of a Single PEMFC Operated at Higher Temperature of 363 and 373 K," Energies, MDPI, vol. 15(4), pages 1-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akira Nishimura & Daiki Mishima & Kyohei Toyoda & Syogo Ito & Mohan Lal Kolhe, 2023. "Numerical Simulation on Effect of Separator Thickness on Coupling Phenomena in Single Cell of PEFC under Higher Temperature Operation Condition at 363 K and 373 K," Energies, MDPI, vol. 16(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akira Nishimura & Daiki Mishima & Kyohei Toyoda & Syogo Ito & Mohan Lal Kolhe, 2023. "Numerical Simulation on Effect of Separator Thickness on Coupling Phenomena in Single Cell of PEFC under Higher Temperature Operation Condition at 363 K and 373 K," Energies, MDPI, vol. 16(2), pages 1-28, January.
    2. Akira Nishimura & Nozomu Kono & Kyohei Toyoda & Daiki Mishima & Mohan Lal Kolhe, 2022. "Impact of Separator Thickness on Temperature Distribution in Single Cell of Polymer Electrolyte Fuel Cell Operated at Higher Temperature of 90 °C and 100 °C," Energies, MDPI, vol. 15(12), pages 1-25, June.
    3. Akira Nishimura & Kyohei Toyoda & Yuya Kojima & Syogo Ito & Eric Hu, 2021. "Numerical Simulation on Impacts of Thickness of Nafion Series Membranes and Relative Humidity on PEMFC Operated at 363 K and 373 K," Energies, MDPI, vol. 14(24), pages 1-24, December.
    4. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    5. Akira Nishimura & Yuya Kojima & Syogo Ito & Eric Hu, 2022. "Impacts of Separator Thickness on Temperature Distribution and Power Generation Characteristics of a Single PEMFC Operated at Higher Temperature of 363 and 373 K," Energies, MDPI, vol. 15(4), pages 1-33, February.
    6. Yang, Luo & Nik-Ghazali, Nik-Nazri & Ali, Mohammed A.H. & Chong, Wen Tong & Yang, Zhenzhong & Liu, Haichao, 2023. "A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    8. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    9. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    10. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    11. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    12. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    13. Yu, Zhongshuai & Liu, Fang & Li, Chengzhang, 2023. "Numerical study on effects of hydrogen ejector on PEMFC performances," Energy, Elsevier, vol. 285(C).
    14. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    15. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    16. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    17. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    18. Saka, Kenan & Orhan, Mehmet Fatih, 2022. "Analysis of stack operating conditions for a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 258(C).
    19. Siwen Gu & Jiaan Wang & Xinmin You & Yu Zhuang, 2023. "Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise Linearization Model," Energies, MDPI, vol. 16(9), pages 1-12, April.
    20. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5936-:d:889741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.