IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5919-d888880.html
   My bibliography  Save this article

A PID Control Method Based on Internal Model Control to Suppress Vibration of the Transmission Chain of Wind Power Generation System

Author

Listed:
  • Chenyang Zhou

    (School of Things Internet Engineering, Jiangnan University, Wuxi 214122, China)

  • Yanxia Shen

    (School of Things Internet Engineering, Jiangnan University, Wuxi 214122, China)

Abstract

Vibrations occur in the wind turbine drivetrain due to the drivetrain’s elasticity and gear clearance. Typically, the PID control method is used to suppress elastic vibration, while the method with the disturbance suppression function is used to suppress nonlinear gear clearance vibration. The purpose of this paper is to propose an equivalent PID control method based on the internal model control (IMC) for suppressing vibration caused by the wind turbine drivetrain’s elasticity and gear clearance. The equivalent PID controller can suppresses elastic vibration; the IMC controller can suppresses gear clearance vibration. First, the vibration principle of the two-mass wind turbine drivetrain with clearance is discussed. After analyzing the nonlinear characteristics of the gear clearance, the nonlinear clearance system is decomposed into a linear unit and a nonlinear bounded disturbance unit. To suppress nonlinear bounded disturbances, a disturbance suppression method based on IMC is proposed; simultaneously, an equivalent PID controller based on IMC is designed to resolve the vibration issue caused by the wind turbine drivetrain’s elasticity. The simulation experimental results show that the clearance vibration is suppressed by the original IMC method. The PID controller obtained by the IMC equivalent transformation can suppress the elastic vibration.

Suggested Citation

  • Chenyang Zhou & Yanxia Shen, 2022. "A PID Control Method Based on Internal Model Control to Suppress Vibration of the Transmission Chain of Wind Power Generation System," Energies, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5919-:d:888880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingming Zhao & Jinchen Ji, 2016. "Dynamic Analysis of Wind Turbine Gearbox Components," Energies, MDPI, vol. 9(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    2. Chenyang Zhou & Yanxia Shen, 2022. "Suppression of Wind Generator Speed Vibration Based on the Internal Model Control with Three Degrees of Freedom," Energies, MDPI, vol. 15(19), pages 1-26, October.
    3. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    4. Yaru Yang & Hua Li & Jin Yao & Wenxiang Gao & Haiyan Peng, 2019. "Analysis on the Force and Life of Gearbox in Double-Rotor Wind Turbine," Energies, MDPI, vol. 12(21), pages 1-19, November.
    5. Francisco Rubio & Carlos Llopis-Albert & Ana M. Pedrosa, 2023. "Analysis of the Influence of Calculation Parameters on the Design of the Gearbox of a High-Power Wind Turbine," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    6. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    7. Radu Saulescu & Mircea Neagoe & Codruta Jaliu & Olimpiu Munteanu, 2021. "A Comparative Performance Analysis of Counter-Rotating Dual-Rotor Wind Turbines with Speed-Adding Increasers," Energies, MDPI, vol. 14(9), pages 1-21, May.
    8. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    9. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    10. Ding, Fangfang & Tian, Zhigang & Zhao, Fuqiong & Xu, Hao, 2018. "An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions," Renewable Energy, Elsevier, vol. 129(PA), pages 260-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5919-:d:888880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.