IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5778-d883960.html
   My bibliography  Save this article

Infrastructure Safety from the Perspective of Resilience Theory

Author

Listed:
  • Xu-Yang Cao

    (College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)

  • Ji-Gang Xu

    (College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China)

  • De-Cheng Feng

    (School of Civil Engineering, Southeast University, Nanjing 211189, China)

Abstract

With the rapid development of urbanization, the scales of urban population and land use are tremendously expanding [...]

Suggested Citation

  • Xu-Yang Cao & Ji-Gang Xu & De-Cheng Feng, 2022. "Infrastructure Safety from the Perspective of Resilience Theory," Energies, MDPI, vol. 15(16), pages 1-5, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5778-:d:883960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Li Hu, 2022. "Energy Resilience in Presence of Natural and Social Uncertainties," Energies, MDPI, vol. 15(18), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    2. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    4. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Carvallo, Juan Pablo & Frick, Natalie Mims & Schwartz, Lisa, 2022. "A review of examples and opportunities to quantify the grid reliability and resilience impacts of energy efficiency," Energy Policy, Elsevier, vol. 169(C).
    7. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    8. Johansson, Bengt & Jonsson, Daniel K. & Veibäck, Ester & Sonnsjö, Hannes, 2016. "Assessing the capabilites to manage risks in energy systems–analytical perspectives and frameworks with a starting point in Swedish experiences," Energy, Elsevier, vol. 116(P1), pages 429-435.
    9. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    11. Liang Zhao & Gaofeng Xu & Yan Cui & Feng Kong & Huina Gao & Xia Zhou, 2023. "Post-Disaster Restoration and Reconstruction Assessment of the Jiuzhaigou Lake Landscape and a Resilience Development Pathway," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    12. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    13. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    16. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    19. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    20. Petersen, L. & Lange, D. & Theocharidou, M., 2020. "Who cares what it means? Practical reasons for using the word resilience with critical infrastructure operators," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5778-:d:883960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.