IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5654-d880076.html
   My bibliography  Save this article

Effective Mild Ethanol-Based Organosolv Pre-Treatment for the Selective Valorization of Polysaccharides and Lignin from Agricultural and Forestry Residues

Author

Listed:
  • Florbela Carvalheiro

    (LNEG-Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal)

  • Luís C. Duarte

    (LNEG-Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal)

  • Filipa Pires

    (LNEG-Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal)

  • Vanmira Van-Dúnem

    (LNEG-Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal)

  • Luís Sanfins

    (LNEG-Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal)

  • Luísa B. Roseiro

    (LNEG-Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal)

  • Francisco Gírio

    (LNEG-Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal)

Abstract

Organosolv pre-treatments aiming to selectively remove and depolymerise lignin and hemicellulose and yield an easily digestible cellulose fraction are one of the potential options for industrial implementation within the biorefinery concept. However, the use of high temperatures and/or high catalyst concentrations is still hindering its wide adoption. In this work, mild temperature organosolv processes (140 °C) that were either non-catalysed or catalysed with sulphuric or acetic acid were compared to standard similar conditions using ethanol-based organosolv for both wheat straw (WS) and eucalyptus wood residues (ERs) as agricultural and forestry-derived model raw materials, respectively. The experimental results demonstrated that high cellulose purities could be obtained for the catalysed ethanol-based processing of the WS, which resulted in high saccharification yields (>80%), conversely to the non-catalysed process, which only reached values close to 70%. For eucalyptus residues (ERs), the pulp yields obtained were lower than the values obtained for the WS, suggesting that the ERs were a more reactive material. Cellulose purity was higher than that obtained for the corresponding treatment for the WS, with the highest cellulose purity being obtained for the ethanol-based process catalysed with sulphuric acid. Both materials presented high lignin yield recovery in the liquid stream.

Suggested Citation

  • Florbela Carvalheiro & Luís C. Duarte & Filipa Pires & Vanmira Van-Dúnem & Luís Sanfins & Luísa B. Roseiro & Francisco Gírio, 2022. "Effective Mild Ethanol-Based Organosolv Pre-Treatment for the Selective Valorization of Polysaccharides and Lignin from Agricultural and Forestry Residues," Energies, MDPI, vol. 15(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5654-:d:880076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria El Hage & Nicolas Louka & Sid-Ahmed Rezzoug & Thierry Maugard & Sophie Sablé & Mohamed Koubaa & Espérance Debs & Zoulikha Maache-Rezzoug, 2023. "Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects," Energies, MDPI, vol. 16(13), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yi-Jing & Li, Han-Yin & Sun, Shao-Ni & Sun, Run-Cang, 2019. "Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production," Renewable Energy, Elsevier, vol. 134(C), pages 228-234.
    2. Ramezani, N. & Sain, M., 2019. "Non-catalytic green solvent lignin isolation process from wheat straw and the structural analysis," Renewable Energy, Elsevier, vol. 140(C), pages 292-303.
    3. Gomes, Daniel G. & Teixeira, José A. & Domingues, Lucília, 2021. "Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds," Applied Energy, Elsevier, vol. 303(C).
    4. Carrillo-Nieves, Danay & Rostro Alanís, Magdalena J. & de la Cruz Quiroz, Reynaldo & Ruiz, Héctor A. & Iqbal, Hafiz M.N. & Parra-Saldívar, Roberto, 2019. "Current status and future trends of bioethanol production from agro-industrial wastes in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 63-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5654-:d:880076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.