IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5427-d873008.html
   My bibliography  Save this article

Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and Circulation System

Author

Listed:
  • Li Chen

    (Department of Mechanical Engineering, Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 2Y2, Canada
    Beijing Yijiajiequ Tech Inc., Beijing 100081, China)

  • Keda Xu

    (Department of Mechanical Engineering, Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 2Y2, Canada)

  • Zuyong Yang

    (Beijing Yijiajiequ Tech Inc., Beijing 100081, China)

  • Zhen Yan

    (Beijing Yijiajiequ Tech Inc., Beijing 100081, China)

  • Zuomin Dong

    (Department of Mechanical Engineering, Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 2Y2, Canada)

Abstract

A proton exchange membrane fuel cell (PEMFC) system requires an adequate hydrogen supply and circulation to achieve its expected performance and operating life. An ejector-based hydrogen circulation system can reduce the operating and maintenance costs, noise, and parasitic power consumption by eliminating the recirculation pump. However, the ejector’s hydrogen entrainment capability, restricted by its geometric parameters and flow control variability, can only operate properly within a relatively narrow range of fuel cell output power. This research introduced the optimal design and operation control methods of a dual-ejector hydrogen supply/circulation system to support the full range of PEMFC system operations. The technique was demonstrated on a 70 kW PEMFC stack with an effective hydrogen entrainment ratio covering 8% to 100% of its output power. The optimal geometry design ensured each ejector covered a specific output power range with maximized entrainment capability. Furthermore, the optimal control of hydrogen flow and the two ejectors’ opening and closing times minimized the anode gas pressure fluctuation and reduced the potential harm to the PEMFC’s operation life. The optimizations were based on dedicated computational fluid dynamics (CFD) and system dynamics models and simulations. Bench tests of the resulting ejector-based hydrogen supply/circulation system verified the simulation and optimization results.

Suggested Citation

  • Li Chen & Keda Xu & Zuyong Yang & Zhen Yan & Zuomin Dong, 2022. "Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and Circulation System," Energies, MDPI, vol. 15(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5427-:d:873008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pei, Pucheng & Ren, Peng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 235(C), pages 729-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruifeng Guo & Dongfang Chen & Yuehua Li & Wenlong Wu & Song Hu & Xiaoming Xu, 2023. "Anode Nitrogen Concentration Estimation Based on Voltage Variation Characteristics for Proton Exchange Membrane Fuel Cell Stacks," Energies, MDPI, vol. 16(5), pages 1-16, February.
    2. Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.
    3. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Yang, Yan & Wen, Chuang, 2023. "Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system," Applied Energy, Elsevier, vol. 346(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zecheng Xu & Bo Liu & Yuqi Tong & Zuomin Dong & Yanbiao Feng, 2024. "Modeling and Control of Ejector-Based Hydrogen Circulation System for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 17(11), pages 1-14, May.
    2. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    3. Xu Liang & Huifang Kang & Rui Zeng & Yue Pang & Yun Yang & Yunlu Qiu & Yuanxu Tao & Jun Shen, 2024. "Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 16(5), pages 1-28, February.
    4. Chao Li & Baigang Sun & Lingzhi Bao, 2024. "Coupling Global Parameters and Local Flow Optimization of a Pulsed Ejector for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 16(10), pages 1-22, May.
    5. Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.
    6. Kuo, Jenn-Kun & Hsieh, Chun-Yao, 2021. "Numerical investigation into effects of ejector geometry and operating conditions on hydrogen recirculation ratio in 80 kW PEM fuel cell system," Energy, Elsevier, vol. 233(C).
    7. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    8. Masoud Arabbeiki & Mohsen Mansourkiaei & Domenico Ferrero & Massimo Santarelli, 2024. "Ejectors in Hydrogen Recirculation for PEMFC-Based Systems: A Comprehensive Review of Design, Operation, and Numerical Simulations," Energies, MDPI, vol. 17(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5427-:d:873008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.