IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5329-d869242.html
   My bibliography  Save this article

Research Trends and Applications of PMUs

Author

Listed:
  • Gian Paramo

    (Electrical and Computer Engineering Department, University of Florida, Gainesville, FL 32603, USA)

  • Arturo Bretas

    (Distributed Systems Group, Pacific Northwest National Laboratory, Richland, WA 99354, USA)

  • Sean Meyn

    (Electrical and Computer Engineering Department, University of Florida, Gainesville, FL 32603, USA)

Abstract

This work is a survey of current trends in applications of PMUs. PMUs have the potential to solve major problems in the areas of power system estimation, protection, and stability. A variety of methods are being used for these purposes, including statistical techniques, mathematical transformations, probability, and AI. The results produced by the techniques reviewed in this work are promising, but there is work to be performed in the context of implementation and standardization. As the smart grid initiative continues to advance, the number of intelligent devices monitoring the power grid continues to increase. PMUs are at the center of this initiative, and as a result, each year more PMUs are deployed across the grid. Since their introduction, myriad solutions based on PMU-technology have been suggested. The high sampling rates and synchronized measurements provided by PMUs are expected to drive significant advancements across multiple fields, such as the protection, estimation, and control of the power grid. This work offers a review of contemporary research trends and applications of PMU technology. Most solutions presented in this work were published in the last five years, and techniques showing potential for significant impact are highlighted in greater detail. Being a relatively new technology, there are several issues that must be addressed before PMU-based solutions can be successfully implemented. This survey found that key areas where improvements are needed include the establishment of PMU-observability, data processing algorithms, the handling of heterogeneous sampling rates, and the minimization of the investment in infrastructure for PMU communication. Solutions based on Bayesian estimation, as well as those having a distributed architectures, show great promise. The material presented in this document is tailored to both new researchers entering this field and experienced researchers wishing to become acquainted with emerging trends.

Suggested Citation

  • Gian Paramo & Arturo Bretas & Sean Meyn, 2022. "Research Trends and Applications of PMUs," Energies, MDPI, vol. 15(15), pages 1-32, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5329-:d:869242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5329/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murilo Eduardo Casteroba Bento, 2023. "Wide-Area Measurement-Based Two-Level Control Design to Tolerate Permanent Communication Failures," Energies, MDPI, vol. 16(15), pages 1-15, July.
    2. Gian Paramo & Arturo Bretas, 2023. "Proactive Frequency Stability Scheme: A Distributed Framework Based on Particle Filters and Synchrophasors," Energies, MDPI, vol. 16(11), pages 1-19, June.
    3. Gabriel J. Lopez & Jorge W. González & Idi A. Isaac & Hugo A. Cardona & Oscar H. Vasco, 2022. "Voltage Stability Control Based on Angular Indexes from Stationary Analysis," Energies, MDPI, vol. 15(19), pages 1-18, October.
    4. Karol Makowiecki & Aleksander Lisowiec & Pawel Michalski & Marcin Habrych, 2022. "UTC Synchronized Signal Generation for Synchrophasors and Sampled Values Measurements," Energies, MDPI, vol. 15(19), pages 1-14, September.
    5. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.
    6. Hamed Rezapour & Sadegh Jamali & Alireza Bahmanyar, 2023. "Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks," Energies, MDPI, vol. 16(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5329-:d:869242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.