IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5198-d865312.html
   My bibliography  Save this article

Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere

Author

Listed:
  • Jarosław Ziółkowski

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland)

  • Aleksandra Lęgas

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland)

  • Elżbieta Szymczyk

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland)

  • Jerzy Małachowski

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland)

  • Mateusz Oszczypała

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland)

  • Joanna Szkutnik-Rogoż

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland)

Abstract

The evolution of changes in shopping in the modern society necessitates suppliers to seek new solutions consisting of increasing the efficiency of transport processes. When it comes to controlling the flow of goods in modern distribution networks, planning and timely deliveries are of particular importance. The first factor creating a competitive advantage involves the tendency to shorten order delivery times, especially for products with a short shelf life. Shorter delivery times, in turn, extend the period of effective residence of the product “available on the shelf”, increasing the likelihood of its sale. The second component in line with the Sustainable Development Strategy consists of aspects related to the protection of the natural environment, in particular those related to car transport. In this case, the fuel consumption and the level of emitted toxic substances (including carbon dioxide) are analyzed and assessed. Bearing in mind the above, this article presents the problem of optimizing the delivery time within the assumed distribution network and its solution, enabling the company to develop and optimal plan for the transport of products with a short shelf life. The paper proposes a model that takes into account minimization of the delivery time, while estimating the values of fuel consumption and CO 2 emissions for the variants considered. The means of transport were medium-duty trucks. Three variants of the assumptions were considered, and algorithms implemented in MS Excel and MATLAB software were used to perform the optimization. Using the MATLAB environment, a more favorable value of the objective function was obtained for the variant without additional constraints. On the other hand, the algorithm implemented in MS Excel more effectively searched the set of acceptable solutions with a larger number of constraining conditions.

Suggested Citation

  • Jarosław Ziółkowski & Aleksandra Lęgas & Elżbieta Szymczyk & Jerzy Małachowski & Mateusz Oszczypała & Joanna Szkutnik-Rogoż, 2022. "Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere," Energies, MDPI, vol. 15(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5198-:d:865312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelelli, E. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2021. "System optimal routing of traffic flows with user constraints using linear programming," European Journal of Operational Research, Elsevier, vol. 293(3), pages 863-879.
    2. Wang, Xin & Kuo, Yong-Hong & Shen, Houcai & Zhang, Lianmin, 2021. "Target-oriented robust location–transportation problem with service-level measure," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 1-20.
    3. Ewelina Zarzycka & Joanna Krasodomska, 2021. "Environmental key performance indicators: the role of regulations and stakeholder influence," Environment Systems and Decisions, Springer, vol. 41(4), pages 651-666, December.
    4. An, Jaehyung & Mikhaylov, Alexey & Jung, Sang-Uk, 2021. "A Linear Programming approach for robust network revenue management in the airline industry," Journal of Air Transport Management, Elsevier, vol. 91(C).
    5. Liu, Guoquan & Li, Lei & Chen, Jianghang & Ma, Fei, 2020. "Inventory sharing strategy and optimization for reusable transport items," International Journal of Production Economics, Elsevier, vol. 228(C).
    6. Karol ANDRZEJCZAK & Jarosław SELECH, 2017. "Quantile Analysis Of The Operating Costs Of The Public Transport Fleet," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(3), pages 103-111, September.
    7. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    8. Farzad Pargar & Adel Pourramzan Ganji & Hannaneh Rashidi Bajgan, 2012. "A novel approach for obtaining initial basic solution of transportation problem," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 12(1), pages 84-99.
    9. Vishu Singhvi & Prateek Srivastava, 2021. "Evaluation of Consumer Reviews for adidas Sports Brands Using Data Mining Tools and Twitter APIs," International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), IGI Global, vol. 12(6), pages 89-104, November.
    10. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    11. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    12. Imen Harbaoui Dridi & Essia Ben Alaïa & Pierre Borne & Hanen Bouchriha, 2020. "Optimisation of the multi-depots pick-up and delivery problems with time windows and multi-vehicles using PSO algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 58(14), pages 4201-4214, July.
    13. Gao, Cai & Yan, Chao & Zhang, Zili & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "An amoeboid algorithm for solving linear transportation problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 179-186.
    14. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    15. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    16. Joanna Szkutnik-Rogoż & Jarosław Ziółkowski & Jerzy Małachowski & Mateusz Oszczypała, 2021. "Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network," Energies, MDPI, vol. 14(21), pages 1-32, October.
    17. Mouna Gargouri Mnif & Sadok Bouamama, 2020. "A New Multi-Objective Firework Algorithm to Solve the Multimodal Planning Network Problem," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 11(4), pages 91-113, October.
    18. Wang, Chao & Ma, Changxi & Xu, Xuecai(Daniel), 2020. "Multi-objective optimization of real-time customized bus routes based on two-stage method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    19. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Jakub Dowejko, 2021. "Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland," Energies, MDPI, vol. 14(8), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Przemysław Kowalik & Grzegorz Sobecki & Piotr Bawoł & Paweł Muzolf, 2023. "A Flow-Based Formulation of the Travelling Salesman Problem with Penalties on Nodes," Sustainability, MDPI, vol. 15(5), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    2. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    3. Maria Cieśla & Elżbieta Macioszek, 2022. "The Perspective Projects Promoting Sustainable Mobility by Active Travel to School on the Example of the Southern Poland Region," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    4. Jarosław Ziółkowski & Józef Żurek & Jerzy Małachowski & Mateusz Oszczypała & Joanna Szkutnik-Rogoż, 2022. "Method for Calculating the Required Number of Transport Vehicles Supplying Aviation Fuel to Aircraft during Combat Tasks," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    5. Joanna Szkutnik-Rogoż & Jarosław Ziółkowski & Jerzy Małachowski & Mateusz Oszczypała, 2021. "Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network," Energies, MDPI, vol. 14(21), pages 1-32, October.
    6. Aihua Tang & Lin Yang & Tao Zeng & Quanqing Yu, 2022. "Cascade Control Method of Sliding Mode and PID for PEMFC Air Supply System," Energies, MDPI, vol. 16(1), pages 1-13, December.
    7. Li, Xueyan & Qiu, Heting & Yang, Yanni & Zhang, Hankun, 2022. "Differentiated fares depend on bus line and time for urban public transport network based on travelers’ day-to-day group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Justin Fraselle & Sabine Louise Limbourg & Laura Vidal, 2021. "Cost and Environmental Impacts of a Mixed Fleet of Vehicles," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    9. Andrzej Żyluk & Mariusz Zieja & Justyna Tomaszewska & Mariusz Michalski & Krzysztof Kordys, 2022. "Service Life Prediction for Rotating Electrical Machines on Aircraft in Terms of Temperature Loads," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    11. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    12. Sylwester Kozak, 2021. "The Impact of COVID-19 on Bank Equity and Performance: The Case of Central Eastern South European Countries," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    13. Marek Stawowy & Adam Rosiński & Jacek Paś & Stanisław Duer & Marta Harničárová & Krzysztof Perlicki, 2023. "The Reliability and Exploitation Analysis Method of the ICT System Power Supply with the Use of Modelling Based on Rough Sets," Energies, MDPI, vol. 16(12), pages 1-18, June.
    14. Fei Han & Jian Wang & Lingli Huang & Yan Li & Liu He, 2023. "Modeling Impacts of Implementation Policies of Tradable Credit Schemes on Traffic Congestion in the Context of Traveler’s Cognitive Illusion," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    15. Tomasz Boczar & Sebastian Borucki & Daniel Jancarczyk & Marcin Bernas & Pawel Kurtasz, 2022. "Application of Selected Machine Learning Techniques for Identification of Basic Classes of Partial Discharges Occurring in Paper-Oil Insulation Measured by Acoustic Emission Technique," Energies, MDPI, vol. 15(14), pages 1-13, July.
    16. Sara Mehrab Daniali & Sergey Evgenievich Barykin & Farzin Mohammadbeigi Khortabi & Olga Vladimirovna Kalinina & Olga Anatolievna Tcukanova & Elena Konstantinovna Torosyan & Svetlana Poliakova & Sergey, 2022. "An Employee Competency Framework in a Welfare Organization," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    17. Zaffar Ahmed Shaikh & Polina Datsyuk & Laura M. Baitenova & Larisa Belinskaja & Natalia Ivolgina & Gulmira Rysmakhanova & Tomonobu Senjyu, 2022. "Effect of the COVID-19 Pandemic on Renewable Energy Firm’s Profitability and Capitalization," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    18. Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.
    19. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).
    20. Bacha Kebede Debela, 2022. "Inter-Organizational Bench-Learning to Respond to Climate Change and Reduce Trade-Offs in Urban Drinking Water Supply: The Case of Grade 2B Municipalities in Oromia National Regional State, Ethiopia," SAGE Open, , vol. 12(3), pages 21582440221, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5198-:d:865312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.