IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5056-d860211.html
   My bibliography  Save this article

Development of a Fault-Diagnosis System through the Power Conversion Module of an Electric Vehicle Fast Charger

Author

Listed:
  • Sang-Jun Park

    (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Korea)

  • Woo-Joong Kim

    (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Korea)

  • Byeong-Su Kang

    (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Korea)

  • Sung-Hyun Jang

    (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Korea)

  • Yeong-Jun Choi

    (Department of Electrical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Korea)

  • Young-Sun Hong

    (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Korea)

Abstract

The supply of electric vehicles (EVs), charging infrastructure, and the demand for chargers are rapidly increasing owing to global low-carbon and eco-friendly policies. As the maintenance of charging infrastructure varies depending on the manufacturer, fault detection and maintenance cannot be conducted promptly. Consequently, user inconvenience increases and becomes an obstacle to EV distribution. Recognizing charger failure after occurrence is a management method that is not economically effective in terms of follow-up. In this study, a data collection system was developed to diagnose EV fast-charger failure remotely in advance. The power module failure-prediction and management system consists of an AC sensor, DC sensor, temperature and humidity sensor, communication board, and data processing device. Furthermore, it was installed inside the fast charger. Four AC inputs, four DC outputs, and temperature and humidity data were collected for 12 months. Using the collected data, the power conversion efficiency was calculated and the power module status was diagnosed. In addition, a multilayer perceptron neural network was used as an algorithm for training the classification model. Charging patterns according to normal and failure were trained and verified. Based on results, the pre-failure diagnosis system demonstrated an accuracy of 97.2%.

Suggested Citation

  • Sang-Jun Park & Woo-Joong Kim & Byeong-Su Kang & Sung-Hyun Jang & Yeong-Jun Choi & Young-Sun Hong, 2022. "Development of a Fault-Diagnosis System through the Power Conversion Module of an Electric Vehicle Fast Charger," Energies, MDPI, vol. 15(14), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5056-:d:860211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yang Andrew & Ng, Artie W. & Yu, Zichao & Huang, Jie & Meng, Ke & Dong, Z.Y., 2021. "A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications," Energy Policy, Elsevier, vol. 148(PB).
    2. Qingyou Yan & Hua Dong & Meijuan Zhang, 2021. "Service Evaluation of Electric Vehicle Charging Station: An Application of Improved Matter-Element Extension Method," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    3. Zhang, Lihui & Zhao, Zhenli & Yang, Meng & Li, Songrui, 2020. "A multi-criteria decision method for performance evaluation of public charging service quality," Energy, Elsevier, vol. 195(C).
    4. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kacperski, Celina & Ulloa, Roberto & Klingert, Sonja & Kirpes, Benedikt & Kutzner, Florian, 2022. "Impact of incentives for greener battery electric vehicle charging – A field experiment," Energy Policy, Elsevier, vol. 161(C).
    2. Wang, Yaxian & Zhao, Zhenli & Baležentis, Tomas, 2023. "Benefit distribution in shared private charging pile projects based on modified Shapley value," Energy, Elsevier, vol. 263(PB).
    3. Chen, Yu & Lin, Boqiang, 2022. "Are consumers in China’s major cities happy with charging infrastructure for electric vehicles?," Applied Energy, Elsevier, vol. 327(C).
    4. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    6. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    7. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    8. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    9. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    10. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    11. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    12. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    13. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    15. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    16. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    17. Arlt, Marie-Louise & Astier, Nicolas, 2023. "Do retail businesses have efficient incentives to invest in public charging stations for electric vehicles?," Energy Economics, Elsevier, vol. 124(C).
    18. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "Empirical Analysis of Parking Behaviour of Conventional and Electric Vehicles for Parking Modelling: A Case Study of Beijing, China," Energies, MDPI, vol. 12(16), pages 1-21, August.
    19. Corneliu Marinescu, 2021. "Design Consideration Regarding a Residential Renewable-Based Microgrid with EV Charging Station Capabilities," Energies, MDPI, vol. 14(16), pages 1-13, August.
    20. Bhat, Furqan A. & Verma, Ashish, 2024. "Electric two-wheeler adoption in India – A discrete choice analysis of motivators and barriers affecting the potential electric two-wheeler buyers," Transport Policy, Elsevier, vol. 152(C), pages 118-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5056-:d:860211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.