IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4788-d851782.html
   My bibliography  Save this article

Development of Methods for Route Optimization of Work in Inhomogeneous Radiation Fields to Minimize the Dose Load of Personnel

Author

Listed:
  • Oleg L. Tashlykov

    (Nuclear Power Plants and RES Department, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Alexander N. Sesekin

    (Nuclear Power Plants and RES Department, Ural Federal University, 620002 Yekaterinburg, Russia
    Institute of Mathematics and Mechanics, UB RAS, 620002 Yekaterinburg, Russia)

  • Alexander G. Chentsov

    (Nuclear Power Plants and RES Department, Ural Federal University, 620002 Yekaterinburg, Russia
    Institute of Mathematics and Mechanics, UB RAS, 620002 Yekaterinburg, Russia)

  • Alexei A. Chentsov

    (Institute of Mathematics and Mechanics, UB RAS, 620002 Yekaterinburg, Russia)

Abstract

The importance of the optimization principle implementation in ensuring the radiation protection of NPP personnel was emphasized. The potential of route optimization in reducing the dose load of the personnel of nuclear power plants and other nuclear facilities is shown. The paper considers the main directions of the authors’ development of the theory and algorithms of route optimization of work in inhomogeneous radiation fields during maintenance, repair, modernization, dismantling of NPP equipment, and elimination of the radiation accident consequences. The results of the computational experiments that were carried out with the “Uran” supercomputer of the IMM UB RAS for the checking of the developed algorithms are presented. The article provides an overview of the developed methods of route optimization of work using the dynamic programming method, including consideration of the constraints in the form of precedence conditions, which means the requirement to perform certain tasks only after the completion of others. Dijkstra’s method was used to solve the “dosimetrist’s problem”, where the optimal route for the dosimetrist’s movement is being constructed, including obstacles bypassing and visiting specified points in the room where it is necessary to perform work to determine the radiation environment characteristics such as measuring the radiation dose rate, taking samples, etc. The routing of movements with the non-additive aggregation of costs is considered. The content of the problem is shown on the example of the radiation accident consequences eliminating on a locality, where, as a result of radioactive fragments scattering, a system of emitting elements appears, which must be deactivated, i.e., dismantled or screened. This task must be carried out in consecutive cycles with a definite threshold level of personnel exposure per shift. A characteristic feature is the dependence of cost functions (here, dosimetric cost) on the list of tasks: only sources that have not been dismantled yet continue emitting at the moment. Precedence conditions are also possible.

Suggested Citation

  • Oleg L. Tashlykov & Alexander N. Sesekin & Alexander G. Chentsov & Alexei A. Chentsov, 2022. "Development of Methods for Route Optimization of Work in Inhomogeneous Radiation Fields to Minimize the Dose Load of Personnel," Energies, MDPI, vol. 15(13), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4788-:d:851782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalantari, Bahman & Hill, Arthur V. & Arora, Sant R., 1985. "An algorithm for the traveling salesman problem with pickup and delivery customers," European Journal of Operational Research, Elsevier, vol. 22(3), pages 377-386, December.
    2. E. Balas, 1999. "New classes of efficiently solvable generalized Traveling Salesman Problems," Annals of Operations Research, Springer, vol. 86(0), pages 529-558, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg L. Tashlykov & Alexey M. Grigoryev & Yuriy A. Kropachev, 2022. "Reducing the Exposure Dose by Optimizing the Route of Personnel Movement When Visiting Specified Points and Taking into Account the Avoidance of Obstacles," Energies, MDPI, vol. 15(21), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Joaquín Antonio Pacheco Bonrostro, 1995. "Problemas de rutas con carga y descarga en sistemas lifo: soluciones exactas," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 3, pages 69-86, Junio.
    3. Francesco Carrabs & Jean-François Cordeau & Gilbert Laporte, 2007. "Variable Neighborhood Search for the Pickup and Delivery Traveling Salesman Problem with LIFO Loading," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 618-632, November.
    4. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    5. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    6. Quadrifoglio, Luca & Dessouky, Maged M. & Ordonez, Fernando, 2008. "Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints," European Journal of Operational Research, Elsevier, vol. 185(2), pages 481-494, March.
    7. Christian Tilk & Stefan Irnich, 2014. "Dynamic Programming for the Minimum Tour Duration Problem," Working Papers 1408, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 04 Aug 2014.
    8. Egon Balas & Neil Simonetti, 2001. "Linear Time Dynamic-Programming Algorithms for New Classes of Restricted TSPs: A Computational Study," INFORMS Journal on Computing, INFORMS, vol. 13(1), pages 56-75, February.
    9. Yanik, Seda & Bozkaya, Burcin & deKervenoael, Ronan, 2014. "A new VRPPD model and a hybrid heuristic solution approach for e-tailing," European Journal of Operational Research, Elsevier, vol. 236(3), pages 879-890.
    10. Jayanth Krishna Mogali & Joris Kinable & Stephen F. Smith & Zachary B. Rubinstein, 2021. "Scheduling for multi-robot routing with blocking and enabling constraints," Journal of Scheduling, Springer, vol. 24(3), pages 291-318, June.
    11. Hernández-Pérez, Hipólito & Salazar-González, Juan-José, 2009. "The multi-commodity one-to-one pickup-and-delivery traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 987-995, August.
    12. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    13. Li, Yongquan & Lim, Andrew & Oon, Wee-Chong & Qin, Hu & Tu, Dejian, 2011. "The tree representation for the pickup and delivery traveling salesman problem with LIFO loading," European Journal of Operational Research, Elsevier, vol. 212(3), pages 482-496, August.
    14. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    15. Christian Tilk & Stefan Irnich, 2017. "Dynamic Programming for the Minimum Tour Duration Problem," Transportation Science, INFORMS, vol. 51(2), pages 549-565, May.
    16. Hipólito Hernández-Pérez & Juan-José Salazar-González, 2004. "Heuristics for the One-Commodity Pickup-and-Delivery Traveling Salesman Problem," Transportation Science, INFORMS, vol. 38(2), pages 245-255, May.
    17. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    18. Psaraftis, Harilaos N., 2011. "A multi-commodity, capacitated pickup and delivery problem: The single and two-vehicle cases," European Journal of Operational Research, Elsevier, vol. 215(3), pages 572-580, December.
    19. Richard K. Congram & Chris N. Potts & Steef L. van de Velde, 2002. "An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 52-67, February.
    20. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4788-:d:851782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.