IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4782-d851558.html
   My bibliography  Save this article

Fatigue Assessment of Wind Turbine Towers: Review of Processing Strategies with Illustrative Case Study

Author

Listed:
  • João Pacheco

    (Construct-ViBest, Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal)

  • Francisco Pimenta

    (Construct-ViBest, Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal)

  • Sérgio Pereira

    (Construct-ViBest, Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal)

  • Álvaro Cunha

    (Construct-ViBest, Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal)

  • Filipe Magalhães

    (Construct-ViBest, Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal)

Abstract

Wind turbines are structures predominantly subjected to dynamic loads throughout their period of life. In that sense, fatigue design plays a central role. Particularly, support structure design might be conservative with respect to fatigue, which may lead to a real fatigue life of considerably more than 20 years. For these reasons, the implementation of a fatigue monitoring system can be an important advantage for the management of wind farms, providing the following outputs: (i) estimation of the evolution of real fatigue condition; (ii) since the real condition of fatigue damage is known, these results could be an essential element for a decision about extending the lifespan of the structure and the possibility of repowering or overpowering; and (iii) the results of the instrumented wind turbines can be extrapolated to other wind turbines of the same wind farm. This paper reviews the procedures for calculating the fatigue damage of wind turbine towers using strain measurements. The applicability of the described procedures is demonstrated with experimental data acquired in an extensive experimental campaign developed at Tocha Wind Farm, an onshore wind farm located in Portugal, exploring the impact of several user-defined parameters on the fatigue results. The paper also includes the description of the data processing needed to convert raw measurements into bending moments and several validation and calibration steps.

Suggested Citation

  • João Pacheco & Francisco Pimenta & Sérgio Pereira & Álvaro Cunha & Filipe Magalhães, 2022. "Fatigue Assessment of Wind Turbine Towers: Review of Processing Strategies with Illustrative Case Study," Energies, MDPI, vol. 15(13), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4782-:d:851558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Currie, Magnus & Saafi, Mohamed & Tachtatzis, Christos & Quail, Francis, 2015. "Structural integrity monitoring of onshore wind turbine concrete foundations," Renewable Energy, Elsevier, vol. 83(C), pages 1131-1138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mattia Silei & Stefania Bellavia & Francesco Superchi & Alessandro Bianchini, 2023. "Recovering Corrupted Data in Wind Farm Measurements: A Matrix Completion Approach," Energies, MDPI, vol. 16(4), pages 1-32, February.
    2. Alexander I. Balitskii & Vitaly V. Dmytryk & Lyubomir M. Ivaskevich & Olexiy A. Balitskii & Alyona V. Glushko & Lev B. Medovar & Karol F. Abramek & Ganna P. Stovpchenko & Jacek J. Eliasz & Marcin A. K, 2022. "Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints," Energies, MDPI, vol. 15(16), pages 1-23, August.
    3. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    2. Junling Chen & Jinwei Li & Qize Li & Youquan Feng, 2021. "Strengthening Mechanism of Studs for Embedded-Ring Foundation of Wind Turbine Tower," Energies, MDPI, vol. 14(3), pages 1-16, January.
    3. Wang, Xuefei & Yang, Xu & Zeng, Xiangwu, 2017. "Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 1013-1022.
    4. Junling Chen & Yiqing Xu & Jinwei Li, 2020. "Numerical Investigation of the Strengthening Method by Circumferential Prestressing to Improve the Fatigue Life of Embedded-Ring Concrete Foundation for Onshore Wind Turbine Tower," Energies, MDPI, vol. 13(3), pages 1-17, January.
    5. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4782-:d:851558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.