IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4757-d850992.html
   My bibliography  Save this article

Design and Research on Electro-Hydraulic Drive and Energy Recovery System of the Electric Excavator Boom

Author

Listed:
  • Lin Li

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Tiezhu Zhang

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Kaiwei Wu

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Liqun Lu

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China)

  • Lianhua Lin

    (Shandong Shifeng (Group) Co., Ltd., Liaocheng 252800, China)

  • Haigang Xu

    (Shandong Shifeng (Group) Co., Ltd., Liaocheng 252800, China)

Abstract

The hydraulic accumulator has the advantages of high power density, fast response, stable operation and high cost performance. However, compared with the electric energy storage method, the hydraulic accumulator has low energy density and large pressure fluctuation while absorbing and discharging energy, which severely limits its application in hydraulic excavators. To improve the potential energy loss of the boom during the lowering process, an electro-hydraulic drive and energy recovery system for excavator booms (EHDR-EEB) based on a battery and accumulator is proposed. As a result, a simulation model of the electro-hydraulic drive and energy management strategy of a 1.6 t pure electric hydraulic excavator is built to investigate the energy regeneration and utilization. The simulation outcomes show that the potential energy recovery rate is as high as 92%. This research on EHDR-EEB makes a significant contribution to the economic improvement of electric hydraulic excavators.

Suggested Citation

  • Lin Li & Tiezhu Zhang & Kaiwei Wu & Liqun Lu & Lianhua Lin & Haigang Xu, 2022. "Design and Research on Electro-Hydraulic Drive and Energy Recovery System of the Electric Excavator Boom," Energies, MDPI, vol. 15(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4757-:d:850992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    2. Paolo Casoli & Luca Riccò & Federico Campanini & Andrea Bedotti, 2016. "Hydraulic Hybrid Excavator—Mathematical Model Validation and Energy Analysis," Energies, MDPI, vol. 9(12), pages 1-19, November.
    3. Jian Yang & Tiezhu Zhang & Hongxin Zhang & Jichao Hong & Zewen Meng, 2020. "Research on the Starting Acceleration Characteristics of a New Mechanical–Electric–Hydraulic Power Coupling Electric Vehicle," Energies, MDPI, vol. 13(23), pages 1-20, November.
    4. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    5. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Lin & Zhang, Tiezhu & Sun, Binbin & Wu, Kaiwei & Sun, Zehao & Zhang, Zhen & Lin, Lianhua & Xu, Haigang, 2023. "Research on electro-hydraulic ratios for a novel mechanical-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 270(C).
    2. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Lin & Zhang, Tiezhu & Sun, Binbin & Wu, Kaiwei & Sun, Zehao & Zhang, Zhen & Lin, Lianhua & Xu, Haigang, 2023. "Research on electro-hydraulic ratios for a novel mechanical-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 270(C).
    2. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    3. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    4. Yang, Jian & Liu, Bo & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin, 2023. "Multi-parameter controlled mechatronics-electro-hydraulic power coupling electric vehicle based on active energy regulation," Energy, Elsevier, vol. 263(PC).
    5. Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
    6. Andrzej Żyluk & Mariusz Zieja & Justyna Tomaszewska & Mariusz Michalski & Krzysztof Kordys, 2022. "Service Life Prediction for Rotating Electrical Machines on Aircraft in Terms of Temperature Loads," Energies, MDPI, vol. 16(1), pages 1-15, December.
    7. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    8. Omar Mutab Alsalami & Efat Yousefpoor & Mehdi Hosseinzadeh & Jan Lansky, 2024. "A Novel Optimized Link-State Routing Scheme with Greedy and Perimeter Forwarding Capability in Flying Ad Hoc Networks," Mathematics, MDPI, vol. 12(7), pages 1-26, March.
    9. Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
    10. Abinab Niraula & Shuzhong Zhang & Tatiana Minav & Matti Pietola, 2018. "Effect of Zonal Hydraulics on Energy Consumption and Boom Structure of a Micro-Excavator," Energies, MDPI, vol. 11(8), pages 1-22, August.
    11. Chongbo Jing & Junjie Zhou & Shihua Yuan & Siyuan Zhao, 2018. "Research on the Pressure Ratio Characteristics of a Swash Plate-Rotating Hydraulic Transformer," Energies, MDPI, vol. 11(6), pages 1-11, June.
    12. Pedro Javier Gamez-Montero & Esteve Codina & Robert Castilla, 2019. "A Review of Gerotor Technology in Hydraulic Machines," Energies, MDPI, vol. 12(12), pages 1-44, June.
    13. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    14. Tri Cuong Do & Hoai Vu Anh Truong & Hoang Vu Dao & Cong Minh Ho & Xuan Dinh To & Tri Dung Dang & Kyoung Kwan Ahn, 2019. "Energy Management Strategy of a PEM Fuel Cell Excavator with a Supercapacitor/Battery Hybrid Power Source," Energies, MDPI, vol. 12(22), pages 1-24, November.
    15. Paolo Casoli & Fabio Scolari & Carlo Maria Vescovini & Massimo Rundo, 2022. "Energy Comparison between a Load Sensing System and Electro-Hydraulic Solutions Applied to a 9-Ton Excavator," Energies, MDPI, vol. 15(7), pages 1-15, April.
    16. Hong, Jichao & Zhang, Tiezhu & Zhang, Zhen & Zhang, Hongxin, 2023. "Investigation of energy management strategy for a novel electric-hydraulic hybrid vehicle: Self-adaptive electric-hydraulic ratio," Energy, Elsevier, vol. 278(C).
    17. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    18. Yu, Xiao & Lin, Cheng & Xie, Peng & Liang, Sheng, 2022. "A novel real-time energy management strategy based on Monte Carlo Tree Search for coupled powertrain platform via vehicle-to-cloud connectivity," Energy, Elsevier, vol. 256(C).
    19. Zewen Meng & Tiezhu Zhang & Hongxin Zhang & Qinghai Zhao & Jian Yang, 2021. "Energy Management Strategy for an Electromechanical-Hydraulic Coupled Power Electric Vehicle Considering the Optimal Speed Threshold," Energies, MDPI, vol. 14(17), pages 1-12, August.
    20. Zhao, Chengxuan & Yang, Xiao & Yu, Jie & Yang, Minghan & Wang, Jianye & Chen, Shuai, 2023. "Interval type-2 fuzzy logic control for a space nuclear reactor core power system," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4757-:d:850992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.