IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4381-d840098.html
   My bibliography  Save this article

Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM

Author

Listed:
  • Christian Tutivén

    (Escuela Superior Politécnica del Litoral (ESPOL), Faculty of Mechanical Engineering and Production Science (FIMCP), Mechatronics Engineering, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil EC090902, Ecuador)

  • Yolanda Vidal

    (Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besós (CDB), Eduard Maristany 16, 08019 Barcelona, Spain
    Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 14, 08028 Barcelona, Spain)

  • Andres Insuasty

    (Departamento de Electrónica, Universidad de Nariño, Clle 18 Cr 50 Ciudadela Universitaria Torobajo, Pasto 52001, Colombia
    Mecatrónica, Facultad de Ingenierías, Universidad ECOTEC, Km. 13.5 Vía a Samborondón, Guayaquil EC092302, Ecuador)

  • Lorena Campoverde-Vilela

    (Escuela Superior Politécnica del Litoral (ESPOL), Faculty of Mechanical Engineering and Production Science (FIMCP), Mechatronics Engineering, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil EC090902, Ecuador)

  • Wilson Achicanoy

    (Departamento de Electrónica, Universidad de Nariño, Clle 18 Cr 50 Ciudadela Universitaria Torobajo, Pasto 52001, Colombia)

Abstract

To reduce the levelized cost of wind energy, through the reduction in operation and maintenance costs, it is imperative that the wind turbine downtime is reduced through maintenance strategies based on condition monitoring. The standard approach toward this challenge is based on vibration monitoring, which requires the installation of specific tailored sensors that incur associated added costs. On the other hand, the life expectancy of wind parks built during the 1990s wind power boom is dwindling, and data-driven maintenance strategies issued from already accessible supervisory control and data acquisition (SCADA) data is an auspicious competitive solution because no additional sensors are required. Note that it is a major issue to provide fault diagnosis approaches built only on SCADA data, as these data were not established with the objective of being used for condition monitoring but rather for control capacities. The present study posits an early fault diagnosis strategy based exclusively on SCADA data and supports it with results on a real wind park with 18 wind turbines. The contributed methodology is an anomaly detection model based on a one-class support vector machine classifier; that is, it is a semi-supervised approach that trains a decision function that categorizes fresh data as similar or dissimilar to the training set. Therefore, only healthy (normal operation) data is required to train the model, which greatly expands the possibility of employing this methodology (because there is no need for faulty data from the past, and only normal operation SCADA data is needed). The results obtained from the real wind park show that this is a promising strategy.

Suggested Citation

  • Christian Tutivén & Yolanda Vidal & Andres Insuasty & Lorena Campoverde-Vilela & Wilson Achicanoy, 2022. "Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM," Energies, MDPI, vol. 15(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4381-:d:840098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    2. Xiaocong Xiao & Jianxun Liu & Deshun Liu & Yufei Tang & Shigang Qin & Fan Zhang, 2022. "A Normal Behavior-Based Condition Monitoring Method for Wind Turbine Main Bearing Using Dual Attention Mechanism and Bi-LSTM," Energies, MDPI, vol. 15(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    2. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    3. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    5. Wei Jiang & Yanhe Xu & Yahui Shan & Han Liu, 2018. "Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data," Energies, MDPI, vol. 11(12), pages 1-18, November.
    6. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    7. Jyh-Cherng Gu & Chun-Hung Liu & Kai-Ying Chou & Ming-Ta Yang, 2019. "Research on CBM of the Intelligent Substation SCADA System," Energies, MDPI, vol. 12(20), pages 1-22, October.
    8. Rommel, D.P. & Di Maio, D. & Tinga, T., 2020. "Calculating wind turbine component loads for improved life prediction," Renewable Energy, Elsevier, vol. 146(C), pages 223-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4381-:d:840098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.