IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4038-d828989.html
   My bibliography  Save this article

Shale Oil Enrichment Mechanism of the Paleogene Xingouzui Formation, Jianghan Basin, China

Author

Listed:
  • Qiqi Li

    (Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China)

  • Shang Xu

    (Shandong Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China)

  • Liang Zhang

    (Exploration and Development Research Institute, Sinopec Jianghan Oilfield Company, Wuhan 430074, China)

  • Fengling Chen

    (Exploration and Development Research Institute, Sinopec Jianghan Oilfield Company, Wuhan 430074, China)

  • Shiqiang Wu

    (Exploration and Development Research Institute, Sinopec Jianghan Oilfield Company, Wuhan 430074, China)

  • Nan Bai

    (Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China)

Abstract

Organic-rich lacustrine shales are widely developed in China, and they have long been simply regarded as homogeneous source rocks, which restricts the understanding of intrasource oil accumulation. At present, the study of the LXF (Lower Member of the Xingouzui Formation) in the Jianghan Basin as an unconventional oil reservoir is still in its infancy, and the hydrocarbon accumulation mechanism is still unclear. Geochemical and mineralogical studies were carried out on a suite of samples from the 100-m-thick sequence, i.e., LXF II Oil Bed, by using XRD, SEM, MICP, and Rock-Eval pyrolysis. The results show that the II Oil Bed is rich in carbonate and poor in clay, so it shows a good fracturing tendency. The high degree of heterogeneity in mineral composition leads to frequent interbedding of different lithofacies. In the II Oil Bed, intercrystalline pores, interparticle pores, and intraparticle pores are developed, and micro-fractures are often observed. However, the main pore types, pore size distribution, and connectivity are quite different among lithofacies, and the carbonate-rich lithofacies have better reservoir capacity. The OM (organic matter) abundance of the II Oil Bed varies greatly and generally ranges from fair to very good. Coupled with its early-mature to mature Type II OM, it is considered to have the characteristics required for oil generation. Comprehensive analysis shows that the II Oil Bed has good shale oil exploration prospects, and the enrichment of shale oil in the sequence is the result of multiple factors matching. Firstly, high organic matter abundance is the material basis for shale oil enrichment. Secondly, thermal maturity is a prerequisite, and the difference in burial depth leads to the differential enrichment of shale oil in different areas. Thirdly, pores and micro-fractures developed in shale not only provide space for hydrocarbon storage, but also form a flow-path network. Finally, multi-scale intrasource migrations are key processes ranging from the scale of lithofacies to the intervals, which further results in the differential shale oil enrichment in different lithofacies and intervals. Considering the hydrocarbon generation capacity and reservoir quality, the prospective depth for shale oil exploration in the study area is >1350 m. The findings of this study can help in the better-understanding of the shale oil enrichment mechanism, and the optimization of future exploration strategies.

Suggested Citation

  • Qiqi Li & Shang Xu & Liang Zhang & Fengling Chen & Shiqiang Wu & Nan Bai, 2022. "Shale Oil Enrichment Mechanism of the Paleogene Xingouzui Formation, Jianghan Basin, China," Energies, MDPI, vol. 15(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4038-:d:828989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey S. Seewald, 2003. "Organic–inorganic interactions in petroleum-producing sedimentary basins," Nature, Nature, vol. 426(6964), pages 327-333, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangbo Lu & Feng Yang & Ting’an Bai & Bing Han & Yongchao Lu & Han Gao, 2022. "Shale Oil Occurrence Mechanisms: A Comprehensive Review of the Occurrence State, Occurrence Space, and Movability of Shale Oil," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Xiaojie Fan & Yongchao Lu & Jingyu Zhang & Shiqiang Wu & Liang Zhang & Xiaojuan Du & Qinyu Cui & Hao Wang, 2022. "Lithofacies Characteristics, Depositional Environment and Sequence Stratigraphic Framework in the Saline Lacustrine Basin-A Case Study of the Eocene Low Member of Xingouzui Formation, Jianghan Basin, ," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
    4. Qiyang Gou & Shang Xu, 2023. "The Controls of Laminae on Lacustrine Shale Oil Content in China: A Review from Generation, Retention, and Storage," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiyang Gou & Shang Xu, 2023. "The Controls of Laminae on Lacustrine Shale Oil Content in China: A Review from Generation, Retention, and Storage," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Rongsheng Zhao & Luquan Ren & Sunhua Deng & Youhong Sun & Zhiyong Chang, 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character," Energies, MDPI, vol. 14(23), pages 1-12, November.
    3. Hou, Lei & Elsworth, Derek & Wang, Jintang & Zhou, Junping & Zhang, Fengshou, 2024. "Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Zhiwei Zhu & Yuncheng Cao & Zihan Zheng & Duofu Chen, 2022. "An Accurate Model for Estimating H 2 Solubility in Pure Water and Aqueous NaCl Solutions," Energies, MDPI, vol. 15(14), pages 1-15, July.
    5. Jian Wang & Jun Jin & Jin Liu & Jingqiang Tan & Lichang Chen & Haisu Cui & Xiao Ma & Xueqi Song, 2023. "Hydrocarbon Generation Mechanism of Mixed Siliciclastic–Carbonate Shale: Implications from Semi–Closed Hydrous Pyrolysis," Energies, MDPI, vol. 16(7), pages 1-21, March.
    6. Yong Chen & Yun Han & Pengfei Zhang & Miao Wang & Yibo Qiu & Xuelei Zhu & Xuejun Zhang, 2023. "Comparison of Evaporite-Related Source Rocks and Implications for Petroleum Exploration: A Case Study of the Dongying Depression, Bohai Bay Basin, Eastern China," Energies, MDPI, vol. 16(13), pages 1-20, June.
    7. Guanghui Yuan & Zihao Jin & Yingchang Cao & Hans-Martin Schulz & Jon Gluyas & Keyu Liu & Xingliang He & Yanzhong Wang, 2024. "Microdroplets initiate organic-inorganic interactions and mass transfer in thermal hydrous geosystems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4038-:d:828989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.