IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3663-d817305.html
   My bibliography  Save this article

Hydrothermal Conversion of Waste Biomass from Greenhouses into Hydrochar for Energy, Soil Amendment, and Wastewater Treatment Applications

Author

Listed:
  • Abu-Taher Jamal-Uddin

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Shakirudeen A. Salaudeen

    (Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada)

  • Animesh Dutta

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Richard G. Zytner

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

Abstract

Solid hydrochar (HC) produced by hydrothermal carbonization (HTC) of tomato plant biomass from a greenhouse (GH) was assessed for different inhouse applications, including fuel, seed germination, and leached GH nutrient feed (GNF) wastewater treatment. Completed experiments showed encouraging results. HC was revealed to be an efficient renewable fuel, having peat-like characteristics with high heating value of about 26.0 MJ/kg and very low clinker forming potential. This would allow the use of HC as fuel for GH heating as a substitute to costly natural gas, or it could be commercialized after pelletizing. Experiments with soil application showed substantial potential for the produced HC in better seed germination of tomato plants. Another benefit from use of the produced HC is as a soil additive, which would also contribute to environmental emission reduction. Results suggest that the generated HC can remove about 6–30% of nutrients from leached-GNF wastewater. This would be an essential treatment in the reduction of nutrients from leached water from GH operations, and thus could prevent/reduce eutrophication. The exhausted HC after treatment application could then be reused for soil remediation. Overall, the paper highlights the potential applications of hydrothermal treatment in valorization of low-valued GH TPB waste, resulting in a circular economy.

Suggested Citation

  • Abu-Taher Jamal-Uddin & Shakirudeen A. Salaudeen & Animesh Dutta & Richard G. Zytner, 2022. "Hydrothermal Conversion of Waste Biomass from Greenhouses into Hydrochar for Energy, Soil Amendment, and Wastewater Treatment Applications," Energies, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3663-:d:817305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1157-1160, December.
    2. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(5), pages 1025-1031, October.
    3. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    4. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    5. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    6. Shrestha, Ankita & Acharya, Bishnu & Farooque, Aitazaz A., 2021. "Study of hydrochar and process water from hydrothermal carbonization of sea lettuce," Renewable Energy, Elsevier, vol. 163(C), pages 589-598.
    7. Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.
    8. Wang, Ruikun & Wang, Chunbo & Zhao, Zhenghui & Jia, Jiandong & Jin, Qingzhuang, 2019. "Energy recovery from high-ash municipal sewage sludge by hydrothermal carbonization: Fuel characteristics of biosolid products," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Wang, Ruikun & Liu, Senyang & Xue, Qiao & Lin, Kai & Yin, Qianqian & Zhao, Zhenghui, 2022. "Analysis and prediction of characteristics for solid product obtained by hydrothermal carbonization of biomass components," Renewable Energy, Elsevier, vol. 183(C), pages 575-585.
    3. Dolf Talman & Zaifu Yang, 2012. "On a Parameterized System of Nonlinear Equations with Economic Applications," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 644-671, August.
    4. Subramanian, S.V. & Subramanyam, Malavika A. & Selvaraj, Sakthivel & Kawachi, Ichiro, 2009. "Are self-reports of health and morbidities in developing countries misleading? Evidence from India," Social Science & Medicine, Elsevier, vol. 68(2), pages 260-265, January.
    5. World Bank, 2002. "Costa Rica : Social Spending and the Poor, Volume 1. Summary of Issues and Recommendations with Executive Summary," World Bank Publications - Reports 15330, The World Bank Group.
    6. Emin Karagözoğlu, 2014. "A noncooperative approach to bankruptcy problems with an endogenous estate," Annals of Operations Research, Springer, vol. 217(1), pages 299-318, June.
    7. Hernández-Hernández, M.E. & Kolokoltsov, V.N. & Toniazzi, L., 2017. "Generalised fractional evolution equations of Caputo type," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 184-196.
    8. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    9. Juan Moreno-Ternero & Antonio Villar, 2006. "The TAL-Family of Rules for Bankruptcy Problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 27(2), pages 231-249, October.
    10. Lee, Hiro & van der Mensbrugghe, Dominique, 2005. "The impact of the US safeguard measures on Northeast Asian producers: General equilibrium assessments," MPRA Paper 82288, University Library of Munich, Germany.
    11. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    12. Wang, Daojuan & Hain, Daniel S. & Larimo, Jorma & Dao, Li T., 2020. "Cultural differences and synergy realization in cross-border acquisitions," International Business Review, Elsevier, vol. 29(3).
    13. Wulf Gaertner & Richard Bradley & Yongsheng Xu & Lars Schwettmann, 2019. "Against the proportionality principle: Experimental findings on bargaining over losses," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
    14. Zhou, H. & Uhlaner, L.M., 2009. "Knowledge Management in the SME and its Relationship to Strategy, Family Orientation and Organization Learning," ERIM Report Series Research in Management ERS-2009-026-ORG, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Turpie, J.K. & Marais, C. & Blignaut, J.N., 2008. "The working for water programme: Evolution of a payments for ecosystem services mechanism that addresses both poverty and ecosystem service delivery in South Africa," Ecological Economics, Elsevier, vol. 65(4), pages 788-798, May.
    16. Tilman Br�ck & Patricia Justino & Philip Verwimp & Andrew Tedesco & Alexandra Avdeenko, 2013. "Measuring Conflict Exposure in Micro-Level Surveys," HiCN Working Papers 153, Households in Conflict Network.
    17. Erik Ansink & Hans-Peter Weikard, 2012. "Sequential sharing rules for river sharing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 187-210, February.
    18. Koichi Hamada & Asahi Noguchi, 2005. "The Role of Preconceived Ideas in Macroeconomic Policy: Japan's Experiences in the Two Deflationary Periods," Working Papers 908, Economic Growth Center, Yale University.
    19. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    20. Dipak R. Pant, 2013. "Managing the global waste in the 21st century: As an anthropologist views it," LIUC Papers in Economics 263, Cattaneo University (LIUC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3663-:d:817305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.