IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3490-d812351.html
   My bibliography  Save this article

Modeling and Analysis of the Harmonic Interaction between Grid-Connected Inverter Clusters and the Utility Grid

Author

Listed:
  • Lintao Ren

    (School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Hui Guo

    (School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Zhenlan Dou

    (State Grid Shanghai Comprehensive Energy Service Co., Ltd., Shanghai 200023, China)

  • Fei Wang

    (School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Lijun Zhang

    (Instituto Superior Técnico, University of Lisbon, 999022 Lisbon, Portugal)

Abstract

The virtual synchronous generator (VSG) is a promising technology for future utility grids, since it can mimic the output characteristics of a synchronous generator, which provides the necessary inertia to a utility grid. However, the large-scale application of VSGs is limited due to the harmonic interaction between VSGs and the utility grid. Therefore, in order to investigate the stability issue as well as improve the practical application for large-scale power stations, the harmonic interaction mechanism between the VSG cluster and the utility grid is addressed. Firstly, the output impedance model of a single VSG is established, and it is found that the resonance frequency is related to parameters including the output filter, controller, and grid impedance. On this basis, the capacitor current control for a grid-connected inverter based on a VSG is proposed to enhance the resonance suppression. Furthermore, the output impedance of the VSG cluster is established, which reveals the harmonic interaction characteristics between the VSG cluster and the utility grid. In addition, in order to suppress the resonance and improve the stability, an inner-loop control strategy of VSG is introduced. Finally, the simulation and experimental results verified the correctness of the established modeling and analysis of the harmonic interaction between the clustered VSGs and the utility grid. The results show that the proposed impedance model is correct and can predict the resonant point accuracy (which is around 2.3 kHz in the simulation and experimental cases). The total harmonic distortion (THD) can be reduced to 3.2% which meets the requirements of IEEE standard 519.

Suggested Citation

  • Lintao Ren & Hui Guo & Zhenlan Dou & Fei Wang & Lijun Zhang, 2022. "Modeling and Analysis of the Harmonic Interaction between Grid-Connected Inverter Clusters and the Utility Grid," Energies, MDPI, vol. 15(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3490-:d:812351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Deng & Nan Xia & Jungang Yin & Jiliang Jin & Shutao Peng & Tong Wang, 2020. "Small-Signal Modeling and Parameter Optimization Design for Photovoltaic Virtual Synchronous Generator," Energies, MDPI, vol. 13(2), pages 1-14, January.
    2. Yusheng Sun & Yaqian Zhao & Zhifeng Dou & Yanyan Li & Leilei Guo, 2020. "Model Predictive Virtual Synchronous Control of Permanent Magnet Synchronous Generator-Based Wind Power System," Energies, MDPI, vol. 13(19), pages 1-14, September.
    3. Yuko Hirase & Yuki Ohara & Naoya Matsuura & Takeaki Yamazaki, 2021. "Dynamics Analysis Using Koopman Mode Decomposition of a Microgrid Including Virtual Synchronous Generator-Based Inverters," Energies, MDPI, vol. 14(15), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuhong Yang & Hui Li & Wei Jia & Zhongxin Liu & Yu Pan & Fengwei Qian, 2022. "Adaptive Virtual Synchronous Generator Based on Model Predictive Control with Improved Frequency Stability," Energies, MDPI, vol. 15(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sijia Wang & Xiangyu Wu & Gang Chen & Yin Xu, 2020. "Small-Signal Stability Analysis of Photovoltaic-Hydro Integrated Systems on Ultra-Low Frequency Oscillation," Energies, MDPI, vol. 13(4), pages 1-17, February.
    2. Jaime A. Rohten & Javier E. Muñoz & Esteban S. Pulido & José J. Silva & Felipe A. Villarroel & José R. Espinoza, 2021. "Very Low Sampling Frequency Model Predictive Control for Power Converters in the Medium and High-Power Range Applications," Energies, MDPI, vol. 14(1), pages 1-18, January.
    3. Giulio Ferro & Michela Robba & Roberto Sacile, 2020. "A Model Predictive Control Strategy for Distribution Grids: Voltage and Frequency Regulation for Islanded Mode Operation," Energies, MDPI, vol. 13(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3490-:d:812351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.