IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p75-d709178.html
   My bibliography  Save this article

Performance Investigation Based on Vital Factors of Agricultural Feeder Supported by Solar Photovoltaic Power Plant

Author

Listed:
  • Nivedita Padole

    (Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India)

  • Ravindra Moharil

    (Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India)

  • Anuradha Munshi

    (Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India)

Abstract

Solar photovoltaic (SPV) installations are growing in the distribution network due to the continuously decreasing prices of solar photovoltaic panels. Installing the SPV Plant on the distribution feeder supplying to the agricultural pumps is a challenging task due to the varying agricultural load pattern of the Agricultural Feeder (AG Feeder). Supply of power and demand creates potential challenges in the low voltage (LV) distribution system. This paper presents a case study of a 2 MW SPV connected to an agricultural feeder in India. Performance analysis has been carried out using field measurement data. The key parameters such as PV Penetration and Capacity Utilization Factor (CUF) are calculated for analysis. Parameters such as Grid Dependency of the load and PV Contribution have been introduced in this paper, which relates to the SPV system behavior more aptly. It is recommended that the Time of Day (ToD) metering with the lowest cost during the solar generation hours will make agricultural consumers shift their demand matching with solar generation hours. Extensive analysis of agricultural feeder connected SPV power plant indicates that the power supply has improved for the feeder during winter and summer months.

Suggested Citation

  • Nivedita Padole & Ravindra Moharil & Anuradha Munshi, 2021. "Performance Investigation Based on Vital Factors of Agricultural Feeder Supported by Solar Photovoltaic Power Plant," Energies, MDPI, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:75-:d:709178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2013. "Status of solar wind renewable energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 1-10.
    2. Moharil, Ravindra M. & Kulkarni, Prakash S., 2009. "A case study of solar photovoltaic power system at Sagardeep Island, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 673-681, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hairat, Manish Kumar & Ghosh, Sajal, 2017. "100GW solar power in India by 2022 – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1041-1050.
    2. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    3. Shekhar, Jai & Suri, Dhruv & Somani, Priyanshi & Lee, Stephen J. & Arora, Mahika, 2021. "Reduced renewable energy stability in India following COVID-19: Insights and key policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    5. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    6. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    7. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
    8. Sivakumar, S. & Sathik, M. Jagabar & Manoj, P.S. & Sundararajan, G., 2016. "An assessment on performance of DC–DC converters for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1475-1485.
    9. Joshi, Lalita & Choudhary, Deepak & Kumar, Praveen & Venkateswaran, Jayendran & Solanki, Chetan S., 2019. "Does involvement of local community ensure sustained energy access? A critical review of a solar PV technology intervention in rural India," World Development, Elsevier, vol. 122(C), pages 272-281.
    10. Chaurey, A. & Kandpal, T.C., 2010. "A techno-economic comparison of rural electrification based on solar home systems and PV microgrids," Energy Policy, Elsevier, vol. 38(6), pages 3118-3129, June.
    11. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    12. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    13. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    14. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    15. Nimish Kumar & Nitai Pal, 2020. "The existence of barriers and proposed recommendations for the development of renewable energy in Indian perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2187-2205, March.
    16. Nannaware, Ashween Deepak & Sai Kumar, Ch Mohan & Srivastava, Shubham & Singh, Suman & Gupta, Manglesh Kumar & Rout, Prasanta Kumar & Chanotiya, C.S. & Lal, R.K. & Nimdeo, Yogesh & Roy, Saumendu, 2022. "Eco-friendly solar distillation apparatus for improving the yield of essential oils with enhancing organoleptic characteristics," Renewable Energy, Elsevier, vol. 191(C), pages 345-356.
    17. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    18. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    19. Matos, Fernando B. & Camacho, José R. & Rodrigues, Pollyanna & Guimarães Jr., Sebastião C., 2011. "A research on the use of energy resources in the Amazon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3196-3206, August.
    20. Singh, N.B. & Kumar, Ashwani & Rai, Sarita, 2014. "Potential production of bioenergy from biomass in an Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 65-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:75-:d:709178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.