IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2650-d549254.html
   My bibliography  Save this article

Novel Five-Level ANPC Bidirectional Converter for Power Quality Enhancement during G2V/V2G Operation of Cascaded EV Charger

Author

Listed:
  • Jorge Lara

    (División de Estudios de Posgrado e Investigación, TNM Instituto Tecnológico de La Laguna, Torreón 27000, Mexico)

  • Lesedi Masisi

    (School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg 2000, South Africa)

  • Concepcion Hernandez

    (División de Estudios de Posgrado e Investigación, TNM Instituto Tecnológico de La Laguna, Torreón 27000, Mexico)

  • Marco A. Arjona

    (División de Estudios de Posgrado e Investigación, TNM Instituto Tecnológico de La Laguna, Torreón 27000, Mexico)

  • Ambrish Chandra

    (Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada)

Abstract

This paper presents a novel single-phase (SP) active-neutral point clamped (ANPC) five-level bidirectional converter (FLBC) for enhancing the power quality (PQ) during the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation of an electric vehicle (EV) charger connected in series. This EV charger is based on a dual-active half-bridge DC-DC converter (DAHBC) with a high frequency isolation transformer. Unlike the comparable ANPC topologies found in literature, the proposed one has two more switches, i.e., ten instead of eight. However, with the addition of these components, the proposed multilevel converter not only becomes capable of properly balancing the voltage of the DC-link split capacitors under various step-changing conditions but it achieves a better efficiency, a lower stress of the switching devices and a more even distribution of the power losses. The resulting grid-tied ANPC-SPFLBC and DAHBC are accurately controlled with a cascaded control strategy and a single-phase shift (SPS) control technique, respectively. The simulation results obtained with MATLAB-SimPowerSystems as well as the experimental results obtained in laboratory validate the proposed ANPC-SPFLBC for a set of exhaustive tests in both V2G and G2V modes. A detailed power quality analysis carried out with a Fluke 43B alike demonstrates the good performance of the proposed topology.

Suggested Citation

  • Jorge Lara & Lesedi Masisi & Concepcion Hernandez & Marco A. Arjona & Ambrish Chandra, 2021. "Novel Five-Level ANPC Bidirectional Converter for Power Quality Enhancement during G2V/V2G Operation of Cascaded EV Charger," Energies, MDPI, vol. 14(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2650-:d:549254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2650/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bor-Ren Lin, 2021. "Implementation of a Resonant Converter with Topology Morphing to Achieve Bidirectional Power Flow," Energies, MDPI, vol. 14(16), pages 1-21, August.
    2. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    3. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2650-:d:549254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.