IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2537-d545396.html
   My bibliography  Save this article

Pyrolysis Characteristics of Undervalued Wood Varieties in the Portuguese Charcoal Sector

Author

Listed:
  • Felix Charvet

    (Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Felipe Silva

    (Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Luís Ruivo

    (Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
    Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Luís Tarelho

    (Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Arlindo Matos

    (Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • José Figueiredo da Silva

    (Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Daniel Neves

    (Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

Abstract

Charcoal production in Portugal is mostly based on the valorization of woody residues from cork oak and holm oak, the latter being considered a reference feedstock in the market. Nevertheless, since wildfire prevention became a priority in Portugal, after the recent dramatic wildfires, urgent actions are being conducted to reduce the fuel load in the forests, which is increasing the amount of biomass that is available for valorization. Additionally, biomass residues from agriculture, forest management, control of invasive species, partially burnt wood from post-fire recovery actions, and waste wood from storm devastated forests need also to be considered within the national biomass valorization policies. This has motivated the present work on whether the carbonization process can be used to valorize alternative woody biomasses not currently used on a large scale. For this purpose, slow pyrolysis experiments were carried out with ten types of wood, using a fixed bed reactor allowing the controlled heating of large fuel particles at 0.1 to 5 °C/min and final temperatures within 300–450 °C. Apart from an evaluation of the mass balance of the process, emphasis was given to the properties of the resulting charcoals considering its major market in Portugal—barbecue charcoal for both recreational and professional purposes.

Suggested Citation

  • Felix Charvet & Felipe Silva & Luís Ruivo & Luís Tarelho & Arlindo Matos & José Figueiredo da Silva & Daniel Neves, 2021. "Pyrolysis Characteristics of Undervalued Wood Varieties in the Portuguese Charcoal Sector," Energies, MDPI, vol. 14(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2537-:d:545396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferreira, Sérgio & Monteiro, Eliseu & Brito, Paulo & Vilarinho, Cândida, 2017. "Biomass resources in Portugal: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1221-1235.
    2. Monteiro, Eliseu & Mantha, Vishveshwar & Rouboa, Abel, 2012. "Portuguese pellets market: Analysis of the production and utilization constrains," Energy Policy, Elsevier, vol. 42(C), pages 129-135.
    3. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    5. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biagio Morrone, 2022. "Residual Biomass Conversion to Bioenergy," Energies, MDPI, vol. 15(16), pages 1-3, August.
    2. Felix Charvet & Arlindo Matos & José Figueiredo da Silva & Luís Tarelho & Mariana Leite & Daniel Neves, 2022. "Charcoal Production in Portugal: Operating Conditions and Performance of a Traditional Brick Kiln," Energies, MDPI, vol. 15(13), pages 1-21, June.
    3. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.
    4. Dudziec, Paweł & Stachowicz, Paweł & Stolarski, Mariusz J., 2023. "Diversity of properties of sawmill residues used as feedstock for energy generation," Renewable Energy, Elsevier, vol. 202(C), pages 822-833.
    5. Nidhoim Assoumani & Merlin Simo-Tagne & Fatima Kifani-Sahban & Ablain Tagne Tagne & Maryam El Marouani & Marcel Brice Obounou Akong & Yann Rogaume & Pierre Girods & André Zoulalian, 2021. "Numerical Study of Cylindrical Tropical Woods Pyrolysis Using Python Tool," Sustainability, MDPI, vol. 13(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    2. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    3. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    4. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    5. Cheng Huang & Xiuyun Sun & Lianjun Wang & Paul Storer & Kadambot H. M. Siddique & Zakaria M. Solaiman, 2021. "Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    6. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    7. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    8. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    9. Brand, Martha Andreia & Jacinto, Rodolfo Cardoso, 2020. "Apple pruning residues: Potential for burning in boiler systems and pellet production," Renewable Energy, Elsevier, vol. 152(C), pages 458-466.
    10. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.
    12. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    13. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Yang, Xinyu & Shao, Shanshan & Li, Xiaohua & Tang, Dong, 2023. "Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor," Renewable Energy, Elsevier, vol. 211(C), pages 21-30.
    15. Leonel J.R. Nunes & Jorge T. Pereira da Costa & Radu Godina & João C.O. Matias & João P.S. Catalão, 2020. "A Logistics Management System for a Biomass-to-Energy Production Plant Storage Park," Energies, MDPI, vol. 13(20), pages 1-21, October.
    16. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).
    17. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Marrugo, Gloria & Valdés, Carlos F. & Gómez, Carlos & Chejne, Farid, 2019. "Pelletizing of Colombian agro-industrial biomasses with crude glycerol," Renewable Energy, Elsevier, vol. 134(C), pages 558-568.
    19. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    20. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2537-:d:545396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.