IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2460-d543475.html
   My bibliography  Save this article

Rational Design and Simulation of Two-Dimensional Perovskite Photonic Crystal Absorption Layers Enabling Improved Light Absorption Efficiency for Solar Cells

Author

Listed:
  • Jian Zou

    (College of Physics, Qingdao University, Qingdao 266071, China)

  • Mengnan Liu

    (College of Physics, Qingdao University, Qingdao 266071, China)

  • Shuyu Tan

    (College of Physics, Qingdao University, Qingdao 266071, China)

  • Zhijie Bi

    (College of Physics, Qingdao University, Qingdao 266071, China)

  • Yong Wan

    (College of Physics, Qingdao University, Qingdao 266071, China)

  • Xiangxin Guo

    (College of Physics, Qingdao University, Qingdao 266071, China)

Abstract

A two-dimensional perovskite photonic crystal structure of Methylamine lead iodide (CH 3 NH 3 PbI 3 , MAPbI 3 ) is rationally designed as the absorption layer for solar cells. The photonic crystal (PC) structure possesses the distinct “slow light” and band gap effect, leading to the increased absorption efficiency of the absorption layer, and thus the increased photoelectric conversion efficiency of the battery. Simulation results indicate that the best absorption efficiency can be achieved when the scattering element of indium arsenide (InAs) cylinder is arranged in the absorption layer in the form of tetragonal lattice with the height of 0.6 μm, the diameter of 0.24 μm, and the lattice constant of 0.4 μm. In the wide wavelength range of 400–1200 nm, the absorption efficiency can be reached up to 82.5%, which is 70.1% higher than that of the absorption layer without the photonic crystal structure. In addition, the absorption layer with photonic crystal structure has good adaptability to the incident light angle, presenting the stable absorption efficiency of 80% in the wide incident range of 0–80°. The results demonstrate that the absorption layer with photonic crystal structure can realize the wide spectrum, wide angle, and high absorption of incident light, resulting in the increased utilization efficiency of solar energy.

Suggested Citation

  • Jian Zou & Mengnan Liu & Shuyu Tan & Zhijie Bi & Yong Wan & Xiangxin Guo, 2021. "Rational Design and Simulation of Two-Dimensional Perovskite Photonic Crystal Absorption Layers Enabling Improved Light Absorption Efficiency for Solar Cells," Energies, MDPI, vol. 14(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2460-:d:543475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Meng & Jingbi You & Yang Yang, 2018. "Addressing the stability issue of perovskite solar cells for commercial applications," Nature Communications, Nature, vol. 9(1), pages 1-4, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Zhou & Yihua Wu & Xiaoning Liu & Jiajia Quan & Zhijie Bi & Feng Yuan & Yong Wan, 2023. "Simulation of Boosting Efficiency of GaAs Absorption Layers with KNbO 3 Scatterers for Solar Cells," Energies, MDPI, vol. 16(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian A. Steele & Tom Braeckevelt & Vittal Prakasam & Giedrius Degutis & Haifeng Yuan & Handong Jin & Eduardo Solano & Pascal Puech & Shreya Basak & Maria Isabel Pintor-Monroy & Hans Gorp & Guillaume, 2022. "An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.
    3. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    5. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Jarla Thiesbrummel & Sahil Shah & Emilio Gutierrez-Partida & Fengshuo Zu & Francisco Peña-Camargo & Stefan Zeiske & Jonas Diekmann & Fangyuan Ye & Karol P. Peters & Kai O. Brinkmann & Pietro Capriogli, 2024. "Ion-induced field screening as a dominant factor in perovskite solar cell operational stability," Nature Energy, Nature, vol. 9(6), pages 664-676, June.
    7. Victoria V. Ozerova & Ivan S. Zhidkov & Aleksandra Boldyreva & Nadezhda N. Dremova & Nikita A. Emelianov & Gennady V. Shilov & Lyubov A. Frolova & Ernst Z. Kurmaev & Alexey Y. Sukhorukov & Sergey M. A, 2021. "Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI 3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier," Energies, MDPI, vol. 14(3), pages 1-14, January.
    8. Taewan Kim & Jongchul Lim & Seulki Song, 2020. "Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells," Energies, MDPI, vol. 13(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2460-:d:543475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.